These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24008355)

  • 1. Influence of cochleostomy and cochlear implant insertion on drug gradients following intratympanic application in Guinea pigs.
    King EB; Hartsock JJ; O'Leary SJ; Salt AN
    Audiol Neurootol; 2013; 18(5):307-16. PubMed ID: 24008355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a longitudinal concentration gradient along scala tympani by sequential sampling of perilymph from the cochlear apex.
    Mynatt R; Hale SA; Gill RM; Plontke SK; Salt AN
    J Assoc Res Otolaryngol; 2006 Jun; 7(2):182-93. PubMed ID: 16718612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of solute entry into cochlear perilymph through the round window membrane.
    Salt AN; Ma Y
    Hear Res; 2001 Apr; 154(1-2):88-97. PubMed ID: 11423219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delayed low frequency hearing loss caused by cochlear implantation interventions via the round window but not cochleostomy.
    Rowe D; Chambers S; Hampson A; Eastwood H; Campbell L; O'Leary S
    Hear Res; 2016 Mar; 333():49-57. PubMed ID: 26739790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct entry of gadolinium into the vestibule following intratympanic applications in Guinea pigs and the influence of cochlear implantation.
    King EB; Salt AN; Eastwood HT; O'Leary SJ
    J Assoc Res Otolaryngol; 2011 Dec; 12(6):741-51. PubMed ID: 21769689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marker entry into vestibular perilymph via the stapes following applications to the round window niche of guinea pigs.
    Salt AN; King EB; Hartsock JJ; Gill RM; O'Leary SJ
    Hear Res; 2012 Jan; 283(1-2):14-23. PubMed ID: 22178981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perilymph sampling from the cochlear apex: a reliable method to obtain higher purity perilymph samples from scala tympani.
    Salt AN; Hale SA; Plonkte SK
    J Neurosci Methods; 2006 May; 153(1):121-9. PubMed ID: 16310856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in endocochlear potential during experimental insertion of a simulated cochlear implant electrode in the guinea pig.
    Oshima H; Ikeda R; Nomura K; Yamazaki M; Hidaka H; Katori Y; Oshima T; Kawase T; Kobayashi T
    Otol Neurotol; 2014 Feb; 35(2):234-40. PubMed ID: 24448282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atraumatic Scala Tympani Cochleostomy; Resolution of the Dilemma.
    Badr A; Shabana Y; Mokbel K; Elsharabasy A; Ghonim M; Sanna M
    J Int Adv Otol; 2018 Aug; 14(2):190-196. PubMed ID: 30100542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perilymph pharmacokinetics of markers and dexamethasone applied and sampled at the lateral semi-circular canal.
    Salt AN; Hartsock JJ; Gill RM; Piu F; Plontke SK
    J Assoc Res Otolaryngol; 2012 Dec; 13(6):771-83. PubMed ID: 22968908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marker retention in the cochlea following injections through the round window membrane.
    Salt AN; Sirjani DB; Hartsock JJ; Gill RM; Plontke SK
    Hear Res; 2007 Oct; 232(1-2):78-86. PubMed ID: 17662546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early cochlear response and ICAM-1 expression to cochlear implantation.
    Kel GE; Tan J; Eastwood HT; Wongprasartsuk S; O'Leary SJ
    Otol Neurotol; 2013 Dec; 34(9):1595-602. PubMed ID: 23928509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Solute movement across the round window membrane in comparison with that across the blood-labyrinth barrier].
    Ito Z; Kusakari J; Salt AN
    Nihon Jibiinkoka Gakkai Kaiho; 1992 Dec; 95(12):1959-67. PubMed ID: 1491278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dexamethasone concentration gradients along scala tympani after application to the round window membrane.
    Plontke SK; Biegner T; Kammerer B; Delabar U; Salt AN
    Otol Neurotol; 2008 Apr; 29(3):401-6. PubMed ID: 18277312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear implant and inflammation reaction: Safety study of a new steroid-eluting electrode.
    Astolfi L; Simoni E; Giarbini N; Giordano P; Pannella M; Hatzopoulos S; Martini A
    Hear Res; 2016 Jun; 336():44-52. PubMed ID: 27109196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomy of the middle-turn cochleostomy.
    Isaacson B; Roland PS; Wright CG
    Laryngoscope; 2008 Dec; 118(12):2200-4. PubMed ID: 18948831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radial communication between the perilymphatic scalae of the cochlea. I: Estimation by tracer perfusion.
    Salt AN; Ohyama K; Thalmann R
    Hear Res; 1991 Nov; 56(1-2):29-36. PubMed ID: 1769922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entry of substances into perilymph through the bone of the otic capsule after intratympanic applications in guinea pigs: implications for local drug delivery in humans.
    Mikulec AA; Plontke SK; Hartsock JJ; Salt AN
    Otol Neurotol; 2009 Feb; 30(2):131-8. PubMed ID: 19180674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation.
    Burghard A; Lenarz T; Kral A; Paasche G
    Hear Res; 2014 Jun; 312():21-7. PubMed ID: 24566091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability changes of the blood-labyrinth barrier measured in vivo during experimental treatments.
    Inamura N; Salt AN
    Hear Res; 1992 Aug; 61(1-2):12-8. PubMed ID: 1526884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.