These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24008417)

  • 1. NetWeAvers: an R package for integrative biological network analysis with mass spectrometry data.
    McClellan EA; Moerland PD; van der Spek PJ; Stubbs AP
    Bioinformatics; 2013 Nov; 29(22):2946-7. PubMed ID: 24008417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments.
    Choi M; Chang CY; Clough T; Broudy D; Killeen T; MacLean B; Vitek O
    Bioinformatics; 2014 Sep; 30(17):2524-6. PubMed ID: 24794931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sfinx: an R package for the elimination of false positives from affinity purification-mass spectrometry datasets.
    Titeca K; Meysman P; Laukens K; Martens L; Tavernier J; Eyckerman S
    Bioinformatics; 2017 Jun; 33(12):1902-1904. PubMed ID: 28186257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2020; 2051():161-197. PubMed ID: 31552629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated proteomic data analysis workflow for mass spectrometry.
    Pendarvis K; Kumar R; Burgess SC; Nanduri B
    BMC Bioinformatics; 2009 Oct; 10 Suppl 11(Suppl 11):S17. PubMed ID: 19811682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential protein expression and peak selection in mass spectrometry data by binary discriminant analysis.
    Gibb S; Strimmer K
    Bioinformatics; 2015 Oct; 31(19):3156-62. PubMed ID: 26026136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.
    Teo G; Kim S; Tsou CC; Collins B; Gingras AC; Nesvizhskii AI; Choi H
    J Proteomics; 2015 Nov; 129():108-120. PubMed ID: 26381204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphonormalizer: an R package for normalization of MS-based label-free phosphoproteomics.
    Saraei S; Suomi T; Kauko O; Elo LL; Stegle O
    Bioinformatics; 2018 Feb; 34(4):693-694. PubMed ID: 28968644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From raw data to biological discoveries: a computational analysis pipeline for mass spectrometry-based proteomics.
    Lavallée-Adam M; Park SK; Martínez-Bartolomé S; He L; Yates JR
    J Am Soc Mass Spectrom; 2015 Nov; 26(11):1820-6. PubMed ID: 26002791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis.
    LaMarche BL; Crowell KL; Jaitly N; Petyuk VA; Shah AR; Polpitiya AD; Sandoval JD; Kiebel GR; Monroe ME; Callister SJ; Metz TO; Anderson GA; Smith RD
    BMC Bioinformatics; 2013 Feb; 14():49. PubMed ID: 23398735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods and algorithms for quantitative proteomics by mass spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2013; 1007():183-217. PubMed ID: 23666727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iq: an R package to estimate relative protein abundances from ion quantification in DIA-MS-based proteomics.
    Pham TV; Henneman AA; Jimenez CR
    Bioinformatics; 2020 Apr; 36(8):2611-2613. PubMed ID: 31909781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DanteR: an extensible R-based tool for quantitative analysis of -omics data.
    Taverner T; Karpievitch YV; Polpitiya AD; Brown JN; Dabney AR; Anderson GA; Smith RD
    Bioinformatics; 2012 Sep; 28(18):2404-6. PubMed ID: 22815360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calib-RT: an open source python package for peptide retention time calibration in DIA mass spectrometry data.
    Zhang Y; Hu C; Wu X; Song J
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38960865
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Wolski WE; Nanni P; Grossmann J; d'Errico M; Schlapbach R; Panse C
    J Proteome Res; 2023 Apr; 22(4):1092-1104. PubMed ID: 36939687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic parsimony through bipartite graph analysis improves accuracy and transparency.
    Zhang B; Chambers MC; Tabb DL
    J Proteome Res; 2007 Sep; 6(9):3549-57. PubMed ID: 17676885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing protein-protein interactions from affinity purification-mass spectrometry data with SAINT.
    Choi H; Liu G; Mellacheruvu D; Tyers M; Gingras AC; Nesvizhskii AI
    Curr Protoc Bioinformatics; 2012 Sep; Chapter 8():8.15.1-8.15.23. PubMed ID: 22948729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including shared peptides for estimating protein abundances: a significant improvement for quantitative proteomics.
    Blein-Nicolas M; Xu H; de Vienne D; Giraud C; Huet S; Zivy M
    Proteomics; 2012 Sep; 12(18):2797-801. PubMed ID: 22833229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OpenMS and TOPP: open source software for LC-MS data analysis.
    Reinert K; Kohlbacher O
    Methods Mol Biol; 2010; 604():201-11. PubMed ID: 20013373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pmartR: Quality Control and Statistics for Mass Spectrometry-Based Biological Data.
    Stratton KG; Webb-Robertson BM; McCue LA; Stanfill B; Claborne D; Godinez I; Johansen T; Thompson AM; Burnum-Johnson KE; Waters KM; Bramer LM
    J Proteome Res; 2019 Mar; 18(3):1418-1425. PubMed ID: 30638385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.