These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24008918)

  • 1. Microsensors and microscale gradients in biofilms.
    Beyenal H; Babauta J
    Adv Biochem Eng Biotechnol; 2014; 146():235-56. PubMed ID: 24008918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method to determine photosynthetic activity from oxygen microsensor data in biofilms subjected to evaporation.
    Li T; Podola B; de Beer D; Melkonian M
    J Microbiol Methods; 2015 Oct; 117():100-7. PubMed ID: 26232709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ monitoring of Shewanella oneidensis MR-1 biofilm growth on gold electrodes by using a Pt microelectrode.
    Bao H; Zheng Z; Yang B; Liu D; Li F; Zhang X; Li Z; Lei L
    Bioelectrochemistry; 2016 Jun; 109():95-100. PubMed ID: 26850925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells.
    Yu YY; Chen HL; Yong YC; Kim DH; Song H
    Chem Commun (Camb); 2011 Dec; 47(48):12825-7. PubMed ID: 22048750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells.
    Babauta JT; Hsu L; Atci E; Kagan J; Chadwick B; Beyenal H
    ChemSusChem; 2014 Oct; 7(10):2898-906. PubMed ID: 25154833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm architecture.
    Schuster JJ; Markx GH
    Adv Biochem Eng Biotechnol; 2014; 146():77-96. PubMed ID: 24008919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor.
    Li T; Piltz B; Podola B; Dron A; de Beer D; Melkonian M
    Biotechnol Bioeng; 2016 May; 113(5):1046-55. PubMed ID: 26498147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial communities and their interactions in biofilm systems: an overview.
    Wuertz S; Okabe S; Hausner M
    Water Sci Technol; 2004; 49(11-12):327-36. PubMed ID: 15303758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer mechanism in Shewanella loihica PV-4 biofilms formed at graphite electrode.
    Jain A; Zhang X; Pastorella G; Connolly JO; Barry N; Woolley R; Krishnamurthy S; Marsili E
    Bioelectrochemistry; 2012 Oct; 87():28-32. PubMed ID: 22281091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Microbial fuel cells as an alternative power supply].
    Il'in VK; Smirnov IA; Soldatov PÉ; Korshunov DV; Tiurin-Kuz'min AIu; Starkova LV; Chumakov PE; Emel'ianova LK; Novikova LM; Debabov VG; Voeĭkova TA
    Aviakosm Ekolog Med; 2012; 46(1):62-7. PubMed ID: 22629587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of biofilm systems: a review.
    Horn H; Lackner S
    Adv Biochem Eng Biotechnol; 2014; 146():53-76. PubMed ID: 25163572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes.
    Jang A; Bishop PL; Okabe S; Lee SG; Kim IS
    Water Sci Technol; 2003; 47(1):49-57. PubMed ID: 12578173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms.
    Mitra S; Sana B; Mukherjee J
    Adv Biochem Eng Biotechnol; 2014; 146():163-205. PubMed ID: 24817086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.
    Roy JN; Luckarift HR; Sizemore SR; Farrington KE; Lau C; Johnson GR; Atanassov P
    Enzyme Microb Technol; 2013 Jul; 53(2):123-7. PubMed ID: 23769313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the resistance and resilience of anode-respiring Shewanella oneidensis biohybrid using microsensors.
    Veerubhotla R; Marzocchi U
    Chemosphere; 2024 Feb; 350():141109. PubMed ID: 38176592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.
    Ledezma P; Greenman J; Ieropoulos I
    Bioresour Technol; 2012 Aug; 118():615-8. PubMed ID: 22704187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs.
    Santegoeds CM; Schramm A; de Beer D
    Biodegradation; 1998; 9(3-4):159-67. PubMed ID: 10022061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes.
    Pons L; Délia ML; Bergel A
    Bioresour Technol; 2011 Feb; 102(3):2678-83. PubMed ID: 21131196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of control mode on the sensitivity of a microbial fuel cell biosensor with Shewanella loihica PV-4 and the underlying bioelectrochemical mechanism.
    Yi Y; Xie B; Zhao T; Qian Z; Liu H
    Bioelectrochemistry; 2019 Aug; 128():109-117. PubMed ID: 30978517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.