These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 24008974)
1. Calculation of intraocular lens surface free energy and its components from contact angle measurements. Baillif S; Baziard-Mouysset G; Roques C; Baziard Y; Kodjikian L Ophthalmic Res; 2013; 50(3):165-73. PubMed ID: 24008974 [TBL] [Abstract][Full Text] [Related]
2. Effect of heparin surface modification in reducing silicone oil adherence to various intraocular lenses. Arthur SN; Peng Q; Apple DJ; Escobar-Gomez M; Bianchi R; Pandey SK; Werner L J Cataract Refract Surg; 2001 Oct; 27(10):1662-9. PubMed ID: 11687368 [TBL] [Abstract][Full Text] [Related]
3. Topography, Wettability, and Electrostatic Charge Consist Major Surface Properties of Intraocular Lenses. Yang N; Zhang DD; Li XD; Lu YY; Qiu XH; Zhang JS; Kong J Curr Eye Res; 2017 Feb; 42(2):201-210. PubMed ID: 27548409 [TBL] [Abstract][Full Text] [Related]
4. Reduced silicone oil adherence to silicone intraocular lens by surface modification with 2-methacryloyloxyethyl phosphoryl-choline. Huang XD; Li HY; Lin L; Yao K Curr Eye Res; 2013 Jan; 38(1):91-6. PubMed ID: 22742824 [TBL] [Abstract][Full Text] [Related]
5. Uveal and capsular biocompatibility of an intraocular lens with a hydrophilic anterior surface and a hydrophobic posterior surface. Huang XD; Yao K; Zhang Z; Zhang Y; Wang Y J Cataract Refract Surg; 2010 Feb; 36(2):290-8. PubMed ID: 20152613 [TBL] [Abstract][Full Text] [Related]
6. Material properties of various intraocular lenses in an experimental study. Tehrani M; Dick HB; Wolters B; Pakula T; Wolf E Ophthalmologica; 2004; 218(1):57-63. PubMed ID: 14688437 [TBL] [Abstract][Full Text] [Related]
7. [Heparin Surface-Modified Poly(methylmethacrylate) and Foldable Hydrophobic Acrylic Intraocular Lenses in Cataract Patients with Acquired Immune Deficiency Syndrome and CMV-Retinitis]. Krieglsteiner S; Gümbel HO; Kohnen T Klin Monbl Augenheilkd; 2004 Jan; 221(1):40-6. PubMed ID: 14745677 [TBL] [Abstract][Full Text] [Related]
8. Comparison of glistenings in intraocular lenses with three different materials: 12-year follow-up. Rønbeck M; Behndig A; Taube M; Koivula A; Kugelberg M Acta Ophthalmol; 2013 Feb; 91(1):66-70. PubMed ID: 22035345 [TBL] [Abstract][Full Text] [Related]
9. Posterior capsular opacification and intraocular lens surface micro-roughness characteristics: an atomic force microscopy study. Mukherjee R; Chaudhury K; Das S; Sengupta S; Biswas P Micron; 2012 Sep; 43(9):937-47. PubMed ID: 22522120 [TBL] [Abstract][Full Text] [Related]
10. Intraocular lens changes after short- and long-term exposure to intraocular silicone oil. An in vivo study. Khawly JA; Lambert RJ; Jaffe GJ Ophthalmology; 1998 Jul; 105(7):1227-33. PubMed ID: 9663226 [TBL] [Abstract][Full Text] [Related]
11. Comparison of posterior capsule opacification development with 3 intraocular lens types: five-year prospective study. Rönbeck M; Zetterström C; Wejde G; Kugelberg M J Cataract Refract Surg; 2009 Nov; 35(11):1935-40. PubMed ID: 19878826 [TBL] [Abstract][Full Text] [Related]
12. Analysis of intraocular lens surface properties with atomic force microscopy. Lombardo M; De Santo MP; Lombardo G; Barberi R; Serrao S J Cataract Refract Surg; 2006 Aug; 32(8):1378-84. PubMed ID: 16863979 [TBL] [Abstract][Full Text] [Related]
13. Cell adhesion to acrylic intraocular lens associated with lens surface properties. Tanaka T; Shigeta M; Yamakawa N; Usui M J Cataract Refract Surg; 2005 Aug; 31(8):1648-51. PubMed ID: 16129305 [TBL] [Abstract][Full Text] [Related]
14. Impact of fibronectin on surface properties of intraocular lenses. Schroeder AC; Lingenfelder C; Seitz B; Grabowy U; W Spraul C; Gatzioufas Z; Herrmann M Graefes Arch Clin Exp Ophthalmol; 2009 Sep; 247(9):1277-83. PubMed ID: 19578868 [TBL] [Abstract][Full Text] [Related]
16. Chemoattraction of inflammatory cells by various intraocular lens materials. Ozdal PC; Antecka E; Baines MG; Vianna RN; Rudzinski M; Deschênes J Ocul Immunol Inflamm; 2005 Dec; 13(6):435-8. PubMed ID: 16321887 [TBL] [Abstract][Full Text] [Related]
17. In vitro biofilm distribution on the intraocular lens surface of different biomaterials. Mazoteras P; Casaroli-Marano RP J Cataract Refract Surg; 2015 Sep; 41(9):1980-8. PubMed ID: 26603407 [TBL] [Abstract][Full Text] [Related]
18. [Intraocular lens and cataract surgery: comparison between bacterial adhesion and risk of postoperative endophthalmitis according to intraocular lens biomaterial]. Baillif S; Ecochard R; Hartmann D; Freney J; Kodjikian L J Fr Ophtalmol; 2009 Sep; 32(7):515-28. PubMed ID: 19539399 [TBL] [Abstract][Full Text] [Related]
19. Heparin surface-modified intraocular lenses in patients with inactive uveitis or diabetes. Tabbara KF; Al-Kaff AS; Al-Rajhi AA; Al-Mansouri SM; Badr IA; Chavis PS; Al-Omar OM Ophthalmology; 1998 May; 105(5):843-5. PubMed ID: 9593384 [TBL] [Abstract][Full Text] [Related]
20. Interaction with intraocular lens materials: does heavy silicone oil act like silicone oil? Yaman A; Saatci AO; Sarioğlu S; Oner FH; Durak I J Cataract Refract Surg; 2007 Jan; 33(1):127-9. PubMed ID: 17189807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]