BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24009094)

  • 1. A caged, destabilized, free radical intermediate in the q-cycle.
    Vennam PR; Fisher N; Krzyaniak MD; Kramer DM; Bowman MK
    Chembiochem; 2013 Sep; 14(14):1745-53. PubMed ID: 24009094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A semiquinone intermediate generated at the Qo site of the cytochrome bc1 complex: importance for the Q-cycle and superoxide production.
    Cape JL; Bowman MK; Kramer DM
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7887-92. PubMed ID: 17470780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc1.
    Sarewicz M; Dutka M; Pintscher S; Osyczka A
    Biochemistry; 2013 Sep; 52(37):6388-95. PubMed ID: 23941428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of semiquinone-[2Fe-2S]
    Sarewicz M; Bujnowicz Ł; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Feb; 1859(2):145-153. PubMed ID: 29180241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex.
    Muller F; Crofts AR; Kramer DM
    Biochemistry; 2002 Jun; 41(25):7866-74. PubMed ID: 12069575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron sweep across four b-hemes of cytochrome bc
    Pintscher S; Pietras R; Sarewicz M; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Jun; 1859(6):459-469. PubMed ID: 29596789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes.
    Mulkidjanian AY
    Biochim Biophys Acta; 2010 Dec; 1797(12):1858-68. PubMed ID: 20650262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary steps in the energy conversion reaction of the cytochrome bc1 complex Qo site.
    Sharp RE; Moser CC; Gibney BR; Dutton PL
    J Bioenerg Biomembr; 1999 Jun; 31(3):225-33. PubMed ID: 10591528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The High-Spin Heme
    Sarewicz M; Pintscher S; Bujnowicz Ł; Wolska M; Artur Osyczka
    Front Chem; 2021; 9():658877. PubMed ID: 34026724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc1 complex.
    Cooley JW; Ohnishi T; Daldal F
    Biochemistry; 2005 Aug; 44(31):10520-32. PubMed ID: 16060661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a two-subunit cytochrome b-c1 subcomplex from Rhodobacter capsulatus and reconstitution of its ubihydroquinone oxidation (Qo) site with purified Fe-S protein subunit.
    Valkova-Valchanova MB; Saribas AS; Gibney BR; Dutton PL; Daldal F
    Biochemistry; 1998 Nov; 37(46):16242-51. PubMed ID: 9819216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposing the complex III Qo semiquinone radical.
    Zhang H; Osyczka A; Dutton PL; Moser CC
    Biochim Biophys Acta; 2007 Jul; 1767(7):883-7. PubMed ID: 17560537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The raised midpoint potential of the [2Fe2S] cluster of cytochrome bc1 is mediated by both the Qo site occupants and the head domain position of the Fe-S protein subunit.
    Cooley JW; Roberts AG; Bowman MK; Kramer DM; Daldal F
    Biochemistry; 2004 Mar; 43(8):2217-27. PubMed ID: 14979718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production.
    Muller FL; Roberts AG; Bowman MK; Kramer DM
    Biochemistry; 2003 Jun; 42(21):6493-9. PubMed ID: 12767232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytochrome b Zn binding amino acid residue histidine 291 is essential for ubihydroquinone oxidation at the Q
    Francia F; Malferrari M; Lanciano P; Steimle S; Daldal F; Venturoli G
    Biochim Biophys Acta; 2016 Nov; 1857(11):1796-1806. PubMed ID: 27550309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of superoxide production by a spin-spin coupling between semiquinone and the Rieske cluster in cytochrome bc
    Bujnowicz Ł; Borek A; Kuleta P; Sarewicz M; Osyczka A
    FEBS Lett; 2019 Jan; 593(1):3-12. PubMed ID: 30428128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional flexibility of electron flow between quinol oxidation Q
    Borek A; Ekiert R; Osyczka A
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine 147 of cytochrome b is required for efficient electron transfer at the ubihydroquinone oxidase site (Qo) of the cytochrome bc1 complex.
    Saribaş AS; Ding H; Dutton PL; Daldal F
    Biochemistry; 1995 Dec; 34(49):16004-12. PubMed ID: 8519756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate redox potential controls superoxide production kinetics in the cytochrome bc complex.
    Cape JL; Aidasani D; Kramer DM; Bowman MK
    Biochemistry; 2009 Nov; 48(45):10716-23. PubMed ID: 19810688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the position of the Qi.- quinone binding site from the protein surface of the cytochrome bc1 complex in Rhodobacter capsulates chromatophores.
    Meinhardt SW; Ohnishi T
    Biochim Biophys Acta; 1992 Apr; 1100(1):67-74. PubMed ID: 1314666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.