BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24009263)

  • 1. Reduced embolic load during clinical cardiopulmonary bypass using a 20 micron arterial filter.
    Jabur GN; Willcox TW; Zahidani SH; Sidhu K; Mitchell SJ
    Perfusion; 2014 May; 29(3):219-25. PubMed ID: 24009263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical evaluation of emboli removal by integrated versus non-integrated arterial filters in new generation oxygenators.
    Jabur GN; Sidhu K; Willcox TW; Mitchell SJ
    Perfusion; 2016 Jul; 31(5):409-17. PubMed ID: 26643883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated Oxygenator FX05.
    Horton SB; Donath S; Thuys CA; Bennett MJ; Augustin SL; Horton AM; Schultz BJ; Bottrell SJ; Konstantinov I; d'Udekem Y; Brizard C
    ASAIO J; 2011; 57(6):522-6. PubMed ID: 21970981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro comparison of the ability of three commonly used pediatric cardiopulmonary bypass circuits to filter gaseous microemboli.
    Feng Qiu ; Talor J; Ündar A
    Perfusion; 2011 Mar; 26(2):167-8. PubMed ID: 21173038
    [No Abstract]   [Full Text] [Related]  

  • 5. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique?
    Merkle F; Böttcher W; Hetzer R
    Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaseous microemboli detection in a simulated pediatric CPB circuit using a novel ultrasound system.
    Miller A; Wang S; Myers JL; Undar A
    ASAIO J; 2008; 54(5):504-8. PubMed ID: 18812742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effectiveness of low-prime cardiopulmonary bypass circuits at removing gaseous emboli.
    Norman MJ; Sistino JJ; Acsell JR
    J Extra Corpor Technol; 2004 Dec; 36(4):336-42. PubMed ID: 15679274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic bubble trap reduces microbubbles during cardiopulmonary bypass: a case study.
    Schönburg M; Urbanek P; Erhardt G; Taborski U; Plechinger H; Hein S; Roth M; Klövekorn WP
    J Extra Corpor Technol; 2000 Sep; 32(3):165-9. PubMed ID: 11146963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood temperature management and gaseous microemboli creation: an in-vitro analysis.
    Sleep J; Syhre I; Evans E
    J Extra Corpor Technol; 2010 Sep; 42(3):219-22. PubMed ID: 21114225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of the air-handling properties of contemporary oxygenators with integrated arterial filter.
    Stehouwer MC; Legg KR; de Vroege R; Kelder JC; Hofman E; de Mol BA; Bruins P
    Perfusion; 2017 Mar; 32(2):118-125. PubMed ID: 27516417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of gaseous microemboli handling of cardiopulmonary bypass circuits with and without integrated arterial line filters.
    Liu S; Newland RF; Tully PJ; Tuble SC; Baker RA
    J Extra Corpor Technol; 2011 Sep; 43(3):107-14. PubMed ID: 22164448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical real-time monitoring of gaseous microemboli in pediatric cardiopulmonary bypass.
    Wang S; Woitas K; Clark JB; Myers JL; Undar A
    Artif Organs; 2009 Nov; 33(11):1026-30. PubMed ID: 20021476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the intensity of microemboli on neurocognitive outcome following cardiopulmonary bypass.
    Doganci S; Gunaydin S; Kocak OM; Yilmaz S; Demirkilic U
    Perfusion; 2013 May; 28(3):256-62. PubMed ID: 23381348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro study of the effectiveness of carbon dioxide flushing of arterial line filters.
    Beckman RR; Gisner C; Evans E
    J Extra Corpor Technol; 2009 Sep; 41(3):161-5. PubMed ID: 19806799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass.
    Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A
    Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two different blood pumps on delivery of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated infant CPB model.
    Wang S; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(5):538-41. PubMed ID: 18812749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo evaluation of Dideco's paediatric cardiopulmonary circuit for neonates weighing less than five kilograms.
    Thiara AS; Eggereide V; Pedersen T; Lindberg H; Fiane AE
    Perfusion; 2010 Jul; 25(4):229-35. PubMed ID: 20576728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of four pediatric cardiopulmonary bypass circuits in terms of perfusion quality and capturing gaseous microemboli.
    Mathis RK; Lin J; Dogal NM; Qiu F; Kunselman A; Wang S; Ündar A
    Perfusion; 2012 Nov; 27(6):470-9. PubMed ID: 22751383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.