BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24009263)

  • 21. Handling ability of gaseous microemboli of two pediatric arterial filters in a simulated CPB model.
    Strother A; Wang S; Kunselman AR; Ündar A
    Perfusion; 2013 May; 28(3):244-52. PubMed ID: 23359037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An in vitro comparison of the ability of three commonly used pediatric cardiopulmonary bypass circuits to filter gaseous microemboli.
    Melchior RW; Rosenthal T; Glatz AC
    Perfusion; 2010 Jul; 25(4):255-63; discussion 265-6. PubMed ID: 20566585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the Quadrox-I neonatal oxygenator with an integrated arterial filter.
    Salavitabar A; Qiu F; Kunselman A; Ündar A
    Perfusion; 2010 Nov; 25(6):409-15. PubMed ID: 20699287
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduction of microemboli count in the priming fluid of cardiopulmonary bypass circuits.
    Merkle F; Boettcher W; Schulz F; Kopitz M; Koster A; Hennig E; Hetzer R
    J Extra Corpor Technol; 2003 Jun; 35(2):133-8. PubMed ID: 12939022
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microemboli detection and classification by innovative ultrasound technology during simulated neonatal cardiopulmonary bypass at different flow rates, perfusion modes, and perfusate temperatures.
    Schreiner RS; Rider AR; Myers JW; Ji B; Kunselman AR; Myers JL; Undar A
    ASAIO J; 2008; 54(3):316-24. PubMed ID: 18496283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gaseous micro-emboli activity during cardiopulmonary bypass in adults: pulsatile flow versus nonpulsatile flow.
    Dodonov M; Milano A; Onorati F; Dal Corso B; Menon T; Ferrarini D; Tessari M; Faggian G; Mazzucco A
    Artif Organs; 2013 Apr; 37(4):357-67. PubMed ID: 23489040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vacuum-assisted venous drainage: to air or not to air, that is the question. Has the bubble burst?
    Willcox TW
    J Extra Corpor Technol; 2002 Mar; 34(1):24-8. PubMed ID: 11911625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gaseous microemboli in a pediatric bypass circuit with an unprimed venous line: an in vitro study.
    Hudacko A; Sievert A; Sistino J
    J Extra Corpor Technol; 2009 Sep; 41(3):166-71. PubMed ID: 19806800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebral microemboli during cardiopulmonary bypass: increased emboli during perfusionist interventions.
    Taylor RL; Borger MA; Weisel RD; Fedorko L; Feindel CM
    Ann Thorac Surg; 1999 Jul; 68(1):89-93. PubMed ID: 10421121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic bubble trap can replace an arterial filter during cardiopulmonary bypass surgery.
    Göritz S; Schelkle H; Rein JG; Urbanek S
    Perfusion; 2006 Nov; 21(6):367-71. PubMed ID: 17312861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embolic activity during in vivo cardiopulmonary bypass.
    DeFoe GR; Dame NA; Farrell MS; Ross CS; Langner CW; Likosky DS
    J Extra Corpor Technol; 2014 Jun; 46(2):150-6. PubMed ID: 25208432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of blood pressure on cerebral outcome in a rat model of cerebral air embolism during cardiopulmonary bypass.
    Qing M; Shim JK; Grocott HP; Sheng H; Mathew JP; Mackensen GB
    J Thorac Cardiovasc Surg; 2011 Aug; 142(2):424-9. PubMed ID: 21277590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can minimized cardiopulmonary bypass systems be safer?
    Ganushchak YM; Ševerdija EE; Simons AP; van Garsse L; Weerwind PW
    Perfusion; 2012 May; 27(3):176-82. PubMed ID: 22337763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new minimized perfusion circuit provides highly effective ultrasound controlled deairing.
    Kutschka I; Schönrock U; El Essawi A; Pahari D; Anssar M; Harringer W
    Artif Organs; 2007 Mar; 31(3):215-20. PubMed ID: 17343697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Venous air in the bypass circuit: a source of arterial line emboli exacerbated by vacuum-assisted drainage.
    Willcox TW; Mitchell SJ; Gorman DF
    Ann Thorac Surg; 1999 Oct; 68(4):1285-9. PubMed ID: 10543494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracorporeal shunt: a theoretical approach to the prevention of arterial hyperoxia and the reduction of gaseous emboli during cardiopulmonary bypass.
    Weightman WM; Gibbs NM
    Anesth Analg; 1996 Mar; 82(3):672-3. PubMed ID: 8623987
    [No Abstract]   [Full Text] [Related]  

  • 37. Detection and classification of gaseous microemboli during pulsatile and nonpulsatile perfusion in a simulated neonatal CPB model.
    Undar A; Ji B; Kunselman AR; Myers JL
    ASAIO J; 2007; 53(6):725-9. PubMed ID: 18043156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microemboli detection on extracorporeal bypass circuits.
    Lynch JE; Riley JB
    Perfusion; 2008 Jan; 23(1):23-32. PubMed ID: 18788214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical gaseous microemboli assessment of an oxygenator with integral arterial filter in the pediatric population.
    Preston TJ; Gomez D; Olshove VF; Phillips A; Galantowicz M
    J Extra Corpor Technol; 2009 Dec; 41(4):226-30. PubMed ID: 20092077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.