BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 24009528)

  • 1. Recurrent modification of a conserved cis-regulatory element underlies fruit fly pigmentation diversity.
    Rogers WA; Salomone JR; Tacy DJ; Camino EM; Davis KA; Rebeiz M; Williams TM
    PLoS Genet; 2013 Aug; 9(8):e1003740. PubMed ID: 24009528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread cis- and trans-regulatory evolution underlies the origin, diversification, and loss of a sexually dimorphic fruit fly pigmentation trait.
    Hughes JT; Williams ME; Rebeiz M; Williams TM
    J Exp Zool B Mol Dev Evol; 2023 Mar; 340(2):143-161. PubMed ID: 34254440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control and evolution of sexually dimorphic characters in Drosophila.
    Kopp A; Duncan I; Godt D; Carroll SB
    Nature; 2000 Nov; 408(6812):553-9. PubMed ID: 11117736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster.
    De Castro S; Peronnet F; Gilles JF; Mouchel-Vielh E; Gibert JM
    PLoS Genet; 2018 Aug; 14(8):e1007573. PubMed ID: 30067846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila.
    Williams TM; Selegue JE; Werner T; Gompel N; Kopp A; Carroll SB
    Cell; 2008 Aug; 134(4):610-23. PubMed ID: 18724934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cis-regulatory evolution integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network.
    Roeske MJ; Camino EM; Grover S; Rebeiz M; Williams TM
    Elife; 2018 Jan; 7():. PubMed ID: 29297463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of Bab paralog expression and abdominal pigmentation among Sophophora fruit fly species.
    Salomone JR; Rogers WA; Rebeiz M; Williams TM
    Evol Dev; 2013; 15(6):442-57. PubMed ID: 24261445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of the trans-regulatory landscape for Drosophila melanogaster abdominal pigmentation.
    Rogers WA; Grover S; Stringer SJ; Parks J; Rebeiz M; Williams TM
    Dev Biol; 2014 Jan; 385(2):417-32. PubMed ID: 24269556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolutionary origination and diversification of a dimorphic gene regulatory network through parallel innovations in cis and trans.
    Camino EM; Butts JC; Ordway A; Vellky JE; Rebeiz M; Williams TM
    PLoS Genet; 2015 Apr; 11(4):e1005136. PubMed ID: 25835988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution.
    Jeong S; Rokas A; Carroll SB
    Cell; 2006 Jun; 125(7):1387-99. PubMed ID: 16814723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constraints on the evolution of a doublesex target gene arising from doublesex's pleiotropic deployment.
    Luo SD; Baker BS
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):E852-61. PubMed ID: 25675536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of sex-specific traits through changes in HOX-dependent doublesex expression.
    Tanaka K; Barmina O; Sanders LE; Arbeitman MN; Kopp A
    PLoS Biol; 2011 Aug; 9(8):e1001131. PubMed ID: 21886483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster.
    Miyagi R; Akiyama N; Osada N; Takahashi A
    Mol Ecol; 2015 Dec; 24(23):5829-41. PubMed ID: 26503353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hox-mediated regulation of doublesex sculpts sex-specific abdomen morphology in Drosophila.
    Wang W; Yoder JH
    Dev Dyn; 2012 Jun; 241(6):1076-90. PubMed ID: 22488883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila.
    Gompel N; Prud'homme B; Wittkopp PJ; Kassner VA; Carroll SB
    Nature; 2005 Feb; 433(7025):481-7. PubMed ID: 15690032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster.
    Kopp A; Graze RM; Xu S; Carroll SB; Nuzhdin SV
    Genetics; 2003 Feb; 163(2):771-87. PubMed ID: 12618413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Drosophila change their combs: the Hox gene Sex combs reduced and sex comb variation among Sophophora species.
    Randsholt NB; Santamaria P
    Evol Dev; 2008; 10(1):121-33. PubMed ID: 18184363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting patterns of sequence evolution at the functionally redundant bric à brac paralogs in Drosophila melanogaster.
    Bickel RD; Schackwitz WS; Pennacchio LA; Nuzhdin SV; Kopp A
    J Mol Evol; 2009 Aug; 69(2):194-202. PubMed ID: 19639236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population.
    Rebeiz M; Pool JE; Kassner VA; Aquadro CF; Carroll SB
    Science; 2009 Dec; 326(5960):1663-7. PubMed ID: 20019281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional conservation and divergence of intersex, a gene required for female differentiation in Drosophila melanogaster.
    Siegal ML; Baker BS
    Dev Genes Evol; 2005 Jan; 215(1):1-12. PubMed ID: 15645316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.