These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24009602)

  • 1. Characterization and Endocytic Internalization of Epith-2 Cell Surface Glycoprotein during the Epithelial-to-Mesenchymal Transition in Sea Urchin Embryos.
    Wakayama N; Katow T; Katow H
    Front Endocrinol (Lausanne); 2013; 4():112. PubMed ID: 24009602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disappearance of an epithelial cell surface-specific glycoprotein (Epith-1) associated with epithelial-mesenchymal conversion in sea urchin embryogenesis.
    Kanoh K; Aizu G; Katow H
    Dev Growth Differ; 2001 Feb; 43(1):83-95. PubMed ID: 11148454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Snail repressor is required for PMC ingression in the sea urchin embryo.
    Wu SY; McClay DR
    Development; 2007 Mar; 134(6):1061-70. PubMed ID: 17287249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pamlin-induced tyrosine phosphorylation of SUp62 protein in primary mesenchyme cells during early embryogenesis in the sea urchin, Hemicentrotus pulcherrimus.
    Katow H; Washio M
    Dev Growth Differ; 2000 Oct; 42(5):519-29. PubMed ID: 11041493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos.
    Katow H
    Tissue Barriers; 2015; 3(4):e1059004. PubMed ID: 26716069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ingression of primary mesenchyme cells of the sea urchin embryo: a precisely timed epithelial mesenchymal transition.
    Wu SY; Ferkowicz M; McClay DR
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):241-52. PubMed ID: 18228256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal expression of pamlin during early embryogenesis in sea urchin and importance of N-linked glycosylation for the glycoprotein function.
    Katow H; Komazaki S
    Rouxs Arch Dev Biol; 1996 May; 205(7-8):371-381. PubMed ID: 28306088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical and ultrastructural properties of the larval ciliary band-associated strand in the sea urchin Hemicentrotus pulcherrimus.
    Katow H; Katow T; Yoshida H; Kiyomoto M; Uemura I
    Front Zool; 2016; 13():27. PubMed ID: 27313654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromere Differentiation in the Sea Urchin Embryo: Immunochemical Characterization of Primary Mesenchyme Cell-Specific Antigen and Its Biological Roles: (sea urchin/primary mesenchyme cell/monoclonal antibody/spicule formation/cell migration).
    Shimizu-Nishikawa K; Katow H; Matsuda R
    Dev Growth Differ; 1990 Dec; 32(6):629-636. PubMed ID: 37281449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin of skeleton forming cells in the sea urchin embryo.
    Urben S; Nislow C; Spiegel M
    Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sea urchin in vivo model to evaluate Epithelial-Mesenchymal Transition.
    Romancino DP; Anello L; Lavanco A; Buffa V; Di Bernardo M; Bongiovanni A
    Dev Growth Differ; 2017 Apr; 59(3):141-151. PubMed ID: 28436008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of growth factor receptor-mediated signal transduction through the mitogen-activated protein kinase pathway in early embryogenesis of the echinoderm.
    Katow H; Aizu G
    Dev Growth Differ; 2002 Oct; 44(5):437-55. PubMed ID: 12392577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae.
    Katow H; Katow T; Abe K; Ooka S; Kiyomoto M; Hamanaka G
    Biol Open; 2014 Jan; 3(1):94-102. PubMed ID: 24357228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo.
    Hamada M; Kiyomoto M
    Dev Growth Differ; 2003 Aug; 45(4):339-50. PubMed ID: 12950275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo.
    Fernandez-Serra M; Consales C; Livigni A; Arnone MI
    Dev Biol; 2004 Apr; 268(2):384-402. PubMed ID: 15063175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletogenic potential of induced secondary mesenchyme cells derived from the presumptive ectoderm in echinoid embryos.
    Minokawa T; Hamaguchi Y; Amemiya S
    Dev Genes Evol; 1997 Mar; 206(7):472-476. PubMed ID: 27747390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):323-39. PubMed ID: 9441671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary mesenchyme cell patterning during the early stages following ingression.
    Peterson RE; McClay DR
    Dev Biol; 2003 Feb; 254(1):68-78. PubMed ID: 12606282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal adhesion kinase (FAK) expression and phosphorylation in sea urchin embryos.
    García MG; Toney SJ; Hille MB
    Gene Expr Patterns; 2004 Mar; 4(2):223-34. PubMed ID: 15161103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromere Differentiation in the Sea Urchin Embryo: Expression of Primary Mesenchyme Cell Specific Antigen during Development: (sea urchin/micromere/primary mesenchyme cell/monoclonal antibody).
    Shimizu K; Noro N; Matsuda R
    Dev Growth Differ; 1988 Feb; 30(1):35-47. PubMed ID: 37282097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.