These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 24009650)

  • 1. Electrotaxis of oral squamous cell carcinoma cells in a multiple-electric-field chip with uniform flow field.
    Tsai HF; Peng SW; Wu CY; Chang HF; Cheng JY
    Biomicrofluidics; 2012; 6(3):34116. PubMed ID: 24009650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrotaxis of lung cancer cells in a multiple-electric-field chip.
    Huang CW; Cheng JY; Yen MH; Young TH
    Biosens Bioelectron; 2009 Aug; 24(12):3510-6. PubMed ID: 19497728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ElectroTaxis-on-a-Chip (ETC): an integrated quantitative high-throughput screening platform for electrical field-directed cell migration.
    Zhao S; Zhu K; Zhang Y; Zhu Z; Xu Z; Zhao M; Pan T
    Lab Chip; 2014 Nov; 14(22):4398-405. PubMed ID: 25242672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell migration microfluidics for electrotaxis-based heterogeneity study of lung cancer cells.
    Li Y; Xu T; Zou H; Chen X; Sun D; Yang M
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):837-845. PubMed ID: 27816579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrotaxis Studies of Lung Cancer Cells using a Multichannel Dual-electric-field Microfluidic Chip.
    Hou HS; Chang HF; Cheng JY
    J Vis Exp; 2015 Dec; (106):e53340. PubMed ID: 26780080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying Electrotaxis in Microfluidic Devices.
    Sun YS
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of EGFR and RTK signaling in the electrotaxis of lung adenocarcinoma cells under direct-current electric field stimulation.
    Tsai HF; Huang CW; Chang HF; Chen JJ; Lee CH; Cheng JY
    PLoS One; 2013; 8(8):e73418. PubMed ID: 23951353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation between cell migration and reactive oxygen species under electric field stimulation.
    Wu SY; Hou HS; Sun YS; Cheng JY; Lo KY
    Biomicrofluidics; 2015 Sep; 9(5):054120. PubMed ID: 26487906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on a Novel MEMS Sensor for Spatial DC Electric Field Measurements in an Ion Flows Field.
    Mou Y; Yu Z; Huang K; Ma Q; Zeng R; Wang Z
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29843436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform electric field generation in circular multi-well culture plates using polymeric inserts.
    Tsai HF; Cheng JY; Chang HF; Yamamoto T; Shen AQ
    Sci Rep; 2016 May; 6():26222. PubMed ID: 27193911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process.
    Sun YS; Peng SW; Cheng JY
    Biomicrofluidics; 2012; 6(3):34117. PubMed ID: 24009651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Fabrication and Characterization of a MEMS-Based Three-Dimensional Electric Field Sensor with Low Cross-Axis Coupling Interference.
    Ling B; Peng C; Ren R; Chu Z; Zhang Z; Lei H; Xia S
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29543744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice.
    Tsai HF; IJspeert C; Shen AQ
    APL Bioeng; 2020 Sep; 4(3):036102. PubMed ID: 32637857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated T lymphocytes migrate toward the cathode of DC electric fields in microfluidic devices.
    Li J; Nandagopal S; Wu D; Romanuik SF; Paul K; Thomson DJ; Lin F
    Lab Chip; 2011 Apr; 11(7):1298-304. PubMed ID: 21327249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip.
    Wang CC; Kao YC; Chi PY; Huang CW; Lin JY; Chou CF; Cheng JY; Lee CH
    Lab Chip; 2011 Feb; 11(4):695-9. PubMed ID: 21152515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D arrays for high throughput assay of cell migration and electrotaxis.
    Zhao S; Gao R; Devreotes PN; Mogilner A; Zhao M
    Cell Biol Int; 2013 Sep; 37(9):995-1002. PubMed ID: 23589440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and analysis of spatially uniform field electrokinetic flow devices: theory and experiment.
    Skulan AJ; Barrett LM; Singh AK; Cummings EB; Fiechtner GJ
    Anal Chem; 2005 Nov; 77(21):6790-7. PubMed ID: 16255575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabrication of Nonplanar Polymeric Microfluidics.
    Chen PC; Lee CY; Duong LH
    Micromachines (Basel); 2018 Sep; 9(10):. PubMed ID: 30424424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.