BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24009672)

  • 1. A global airport-based risk model for the spread of dengue infection via the air transport network.
    Gardner L; Sarkar S
    PLoS One; 2013; 8(8):e72129. PubMed ID: 24009672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A predictive spatial model to quantify the risk of air-travel-associated dengue importation into the United States and europe.
    Gardner LM; Fajardo D; Waller ST; Wang O; Sarkar S
    J Trop Med; 2012; 2012():103679. PubMed ID: 22523497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global model for predicting the arrival of imported dengue infections.
    Liebig J; Jansen C; Paini D; Gardner L; Jurdak R
    PLoS One; 2019; 14(12):e0225193. PubMed ID: 31800583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical transmission of dengue virus in the Yogyakarta airport area.
    Satoto TBT; Listyantanto A; Agustjahjani SD; Josef HK; Widartono BS
    Environ Health Prev Med; 2018 Jun; 23(1):22. PubMed ID: 29871615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and epidemiological characteristics of imported dengue fever among inbound passengers: Infrared thermometer-based active surveillance at an international airport.
    Su CP; Wang YY; Ku KC; Fang CT
    PLoS One; 2019; 14(12):e0225840. PubMed ID: 31805101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Airport sentinel surveillance and entry quarantine for dengue infections following a fever screening program in Taiwan.
    Kuan MM; Chang FY
    BMC Infect Dis; 2012 Aug; 12():182. PubMed ID: 22867003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating air travel-associated importations of dengue virus into Italy.
    Quam MB; Khan K; Sears J; Hu W; Rocklöv J; Wilder-Smith A
    J Travel Med; 2015; 22(3):186-93. PubMed ID: 25756472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of international travel dynamics on domestic spread of 2019-nCoV in India: origin-based risk assessment in importation of infected travelers.
    Gunthe SS; Patra SS
    Global Health; 2020 May; 16(1):45. PubMed ID: 32398137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.
    Huang Z; Das A; Qiu Y; Tatem AJ
    Int J Health Geogr; 2012 Aug; 11():33. PubMed ID: 22892045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating COVID-19 outbreak risk through air travel.
    Daon Y; Thompson RN; Obolski U
    J Travel Med; 2020 Aug; 27(5):. PubMed ID: 32502274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entomological indices of Aedes aegypti at some international airports and seaports of southern India--a report.
    Sharma SN; Kumar S; Das BP; Thomas TG; Kumar K; Katyal R; Gill KS; Bora D; Lal S; Saxena VK
    J Commun Dis; 2005 Sep; 37(3):173-81. PubMed ID: 17080700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ebola virus outbreak in North Kivu and Ituri provinces, Democratic Republic of Congo, and the potential for further transmission through commercial air travel.
    Tuite AR; Watts AG; Khan K; Bogoch II
    J Travel Med; 2019 Oct; 26(7):. PubMed ID: 31414699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk of global spread of Middle East respiratory syndrome coronavirus (MERS-CoV) via the air transport network.
    Gardner LM; Chughtai AA; MacIntyre CR
    J Travel Med; 2016 Jun; 23(6):. PubMed ID: 27601536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Public health measures at the airport of Hamburg during the early phase of pandemic influenza (H1N1) 2009].
    Schlaich C; Sevenich C; Gau B
    Gesundheitswesen; 2012 Mar; 74(3):145-53. PubMed ID: 21305451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. International dispersal of dengue through air travel: importation risk for Europe.
    Semenza JC; Sudre B; Miniota J; Rossi M; Hu W; Kossowsky D; Suk JE; Van Bortel W; Khan K
    PLoS Negl Trop Dis; 2014 Dec; 8(12):e3278. PubMed ID: 25474491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe.
    Massad E; Amaku M; Coutinho FAB; Struchiner CJ; Burattini MN; Khan K; Liu-Helmersson J; Rocklöv J; Kraemer MUG; Wilder-Smith A
    Sci Rep; 2018 Mar; 8(1):4629. PubMed ID: 29545610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of air travel on the precocity and severity of COVID-19 deaths in sub-national areas across 45 countries.
    Recchi E; Ferrara A; Rodriguez Sanchez A; Deutschmann E; Gabrielli L; Iacus S; Bastiani L; Spyratos S; Vespe M
    Sci Rep; 2022 Oct; 12(1):16522. PubMed ID: 36192435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the impact of network structure on air travel pattern at different scales.
    Huynh HN; Ng KL; Toh R; Feng L
    PLoS One; 2024; 19(3):e0299897. PubMed ID: 38457398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling airport catchment areas to anticipate the spread of infectious diseases across land and air travel.
    Huber C; Watts A; Grills A; Yong JHE; Morrison S; Bowden S; Tuite A; Nelson B; Cetron M; Khan K
    Spat Spatiotemporal Epidemiol; 2021 Feb; 36():100380. PubMed ID: 33509428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An open-access modeled passenger flow matrix for the global air network in 2010.
    Huang Z; Wu X; Garcia AJ; Fik TJ; Tatem AJ
    PLoS One; 2013; 8(5):e64317. PubMed ID: 23691194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.