These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 24010372)

  • 1. Comparison between two different nanoparticle size spectrometers.
    Belosi F; Ferrari S; Poluzzi V; Santachiara G; Prodi F
    J Air Waste Manag Assoc; 2013 Aug; 63(8):918-25. PubMed ID: 24010372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of filter media for particle number, surface area and mass penetrations.
    Li L; Zuo Z; Japuntich DA; Pui DY
    Ann Occup Hyg; 2012 Jul; 56(5):581-94. PubMed ID: 22752097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.
    Stabile L; Cauda E; Marini S; Buonanno G
    Ann Occup Hyg; 2014 Aug; 58(7):860-76. PubMed ID: 24817159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Airborne Nanoparticle Loss in Sampling Tubing.
    Tsai CS
    J Occup Environ Hyg; 2015; 12(8):D161-7. PubMed ID: 25746064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Comparison of Field Portable Instruments to the Scanning Mobility Particle Sizer Using Monodispersed and Polydispersed Sodium Chloride Aerosols.
    Vo E; Horvatin M; Zhuang Z
    Ann Work Expo Health; 2018 Jul; 62(6):711-720. PubMed ID: 29788040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a condensation particle counter and an optical particle counter to assess the number concentration of engineered nanoparticles.
    Schmoll LH; Peters TM; O'Shaughnessy PT
    J Occup Environ Hyg; 2010 Sep; 7(9):535-45. PubMed ID: 20614365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection factor for N95 filtering facepiece respirators exposed to laboratory aerosols containing different concentrations of nanoparticles.
    Rengasamy S; Walbert G; Newcomb W; Coffey C; Wassell JT; Szalajda J
    Ann Occup Hyg; 2015 Apr; 59(3):373-81. PubMed ID: 25429023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the nucleation of atmospheric aerosol particles.
    Kulmala M; Petäjä T; Nieminen T; Sipilä M; Manninen HE; Lehtipalo K; Dal Maso M; Aalto PP; Junninen H; Paasonen P; Riipinen I; Lehtinen KE; Laaksonen A; Kerminen VM
    Nat Protoc; 2012 Sep; 7(9):1651-67. PubMed ID: 22899333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.
    Rengasamy S; Eimer BC
    J Occup Environ Hyg; 2012; 9(2):99-109. PubMed ID: 22239104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements.
    Yamada M; Takaya M; Ogura I
    Ind Health; 2015; 53(6):511-6. PubMed ID: 26320727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols.
    Mills JB; Park JH; Peters TM
    J Occup Environ Hyg; 2013; 10(5):250-8. PubMed ID: 23473056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel aerosol analysis approach for characterization of nanoparticulate matter in snow.
    Nazarenko Y; Rangel-Alvarado RB; Kos G; Kurien U; Ariya PA
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4480-4493. PubMed ID: 27943145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures.
    Niu J; Rasmussen PE; Magee R; Nilsson G
    Environ Sci Process Impacts; 2015 Jan; 17(1):98-109. PubMed ID: 25410705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Personal exposure to ultrafine particles from PVC welding and concrete work during tunnel rehabilitation.
    Jørgensen RB; Buhagen M; Føreland S
    Occup Environ Med; 2016 Jul; 73(7):467-73. PubMed ID: 27016529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic of submicrometer particles in urban environment.
    Avino P; Manigrasso M
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):13908-13920. PubMed ID: 27146536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.