These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 24010460)
1. Difference between far-infrared photoconductivity spectroscopy and absorption spectroscopy: theoretical evidence of the electron reservoir mechanism. Toyoda T; Fujita M; Uchida T; Hiraiwa N; Fukuda T; Koizumi H; Zhang C Phys Rev Lett; 2013 Aug; 111(8):086801. PubMed ID: 24010460 [TBL] [Abstract][Full Text] [Related]
2. Plateaus in the dispersion of two-dimensional magnetoplasmons in GaAs quantum wells: theoretical evidence of an electron reservoir. Toyoda T; Hiraiwa N; Fukuda T; Koizumi H Phys Rev Lett; 2008 Jan; 100(3):036802. PubMed ID: 18233019 [TBL] [Abstract][Full Text] [Related]
3. Quantized dispersion of two-dimensional magnetoplasmons detected by photoconductivity spectroscopy. Holland S; Heyn Ch; Heitmann D; Batke E; Hey R; Friedland KJ; Hu CM Phys Rev Lett; 2004 Oct; 93(18):186804. PubMed ID: 15525193 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of the ν = 5/2 fractional quantum Hall state in a small in-plane magnetic field. Liu G; Zhang C; Tsui DC; Knez I; Levine A; Du RR; Pfeiffer LN; West KW Phys Rev Lett; 2012 May; 108(19):196805. PubMed ID: 23003074 [TBL] [Abstract][Full Text] [Related]
5. Magnetoplasmon excitations from integer-filled Landau levels in narrow-gap quantum wells. Krishtopenko SS J Phys Condens Matter; 2013 Sep; 25(36):365602. PubMed ID: 23924637 [TBL] [Abstract][Full Text] [Related]
6. Imaging topology of Hofstadter ribbons. Genkina D; Aycock LM; Lu HI; Lu M; Pineiro AM; Spielman IB New J Phys; 2019; 21(5):. PubMed ID: 32855619 [TBL] [Abstract][Full Text] [Related]
7. Relaxation in driven integer quantum Hall edge states. Kovrizhin DL; Chalker JT Phys Rev Lett; 2012 Sep; 109(10):106403. PubMed ID: 23005309 [TBL] [Abstract][Full Text] [Related]
8. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review. Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491 [TBL] [Abstract][Full Text] [Related]
9. Many-body effects on the rho(xx) ringlike structures in two-subband wells. Ferreira GJ; Freire HJ; Egues JC Phys Rev Lett; 2010 Feb; 104(6):066803. PubMed ID: 20366846 [TBL] [Abstract][Full Text] [Related]
10. Invited article: An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument. Kühne P; Herzinger CM; Schubert M; Woollam JA; Hofmann T Rev Sci Instrum; 2014 Jul; 85(7):071301. PubMed ID: 25085120 [TBL] [Abstract][Full Text] [Related]
11. Dissipation of intersubband plasmons in wide quantum wells. Williams JB; Sherwin MS; Maranowski KD; Gossard AC Phys Rev Lett; 2001 Jul; 87(3):037401. PubMed ID: 11461588 [TBL] [Abstract][Full Text] [Related]
12. Intrinsic spin Hall effect in the two-dimensional hole gas. Bernevig BA; Zhang SC Phys Rev Lett; 2005 Jul; 95(1):016801. PubMed ID: 16090642 [TBL] [Abstract][Full Text] [Related]
13. Fractional quantum Hall effect and Wigner crystal of interacting composite fermions. Liu Y; Kamburov D; Hasdemir S; Shayegan M; Pfeiffer LN; West KW; Baldwin KW Phys Rev Lett; 2014 Dec; 113(24):246803. PubMed ID: 25541794 [TBL] [Abstract][Full Text] [Related]
14. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient. Sahai AA; Tsung FS; Tableman AR; Mori WB; Katsouleas TC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043105. PubMed ID: 24229291 [TBL] [Abstract][Full Text] [Related]
15. Dynamical screening effects in correlated electron materials-a progress report on combined many-body perturbation and dynamical mean field theory: 'GW + DMFT'. Biermann S J Phys Condens Matter; 2014 Apr; 26(17):173202. PubMed ID: 24722486 [TBL] [Abstract][Full Text] [Related]
16. Sign change of the spin Hall effect due to electron correlation in nonmagnetic CuIr alloys. Xu Z; Gu B; Mori M; Ziman T; Maekawa S Phys Rev Lett; 2015 Jan; 114(1):017202. PubMed ID: 25615499 [TBL] [Abstract][Full Text] [Related]
17. Theory of interlayer tunneling in bilayer quantum Hall ferromagnets. Stern A; Girvin SM; MacDonald AH; Ma N Phys Rev Lett; 2001 Feb; 86(9):1829-32. PubMed ID: 11290259 [TBL] [Abstract][Full Text] [Related]
18. Magnetic control of ferroelectric interfaces. Dussan S; Kumar A; Katiyar RS; Priya S; Scott JF J Phys Condens Matter; 2011 May; 23(20):202203. PubMed ID: 21540509 [TBL] [Abstract][Full Text] [Related]
19. Bilayer coherent and quantum Hall phases: duality and quantum disorder. Demler E; Nayak C; Das Sarma S Phys Rev Lett; 2001 Feb; 86(9):1853-6. PubMed ID: 11290265 [TBL] [Abstract][Full Text] [Related]
20. Dirac and normal fermions in graphite and graphene: implications of the quantum Hall effect. Luk'yanchuk IA; Kopelevich Y Phys Rev Lett; 2006 Dec; 97(25):256801. PubMed ID: 17280377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]