These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24010551)

  • 1. Computational simulation of a new system modelling ions electromigration through biological membranes.
    Alaa N; Lefraich H
    Theor Biol Med Model; 2013 Sep; 10():51. PubMed ID: 24010551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second-generation computational modeling of cardiac electrophysiology: response of action potential to ionic concentration changes and metabolic inhibition.
    Alaa NE; Lefraich H; El Malki I
    Theor Biol Med Model; 2014 Oct; 11():46. PubMed ID: 25335804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of convection-diffusion discretisation scheme employed for computational modelling of biological mass transport.
    Carroll GT; Devereux PD; Ku DN; McGloughlin TM; Walsh MT
    Biomed Eng Online; 2010 Jul; 9():34. PubMed ID: 20642816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of ionic transport processes in fish intestinal epithelial cells.
    Movileanu L; Flonta ML; Mihailescu D; Frangopol PT
    Biosystems; 1998 Feb; 45(2):123-40. PubMed ID: 9544403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.
    Tu B; Chen M; Xie Y; Zhang L; Eisenberg B; Lu B
    J Comput Chem; 2013 Sep; 34(24):2065-78. PubMed ID: 23740647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate numerical simulation of electrodiffusion and water movement in brain tissue.
    Ellingsrud AJ; Boullé N; Farrell PE; Rognes ME
    Math Med Biol; 2021 Dec; 38(4):516-551. PubMed ID: 34791309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroneutral models for dynamic Poisson-Nernst-Planck systems.
    Song Z; Cao X; Huang H
    Phys Rev E; 2018 Jan; 97(1-1):012411. PubMed ID: 29448453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and high-resolution simulations of nonlinear electrokinetic processes in variable cross-section channels.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2012 Oct; 33(19-20):3036-51. PubMed ID: 22996734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical model of acid-base transport in rat distal tubule.
    Chang H; Fujita T
    Am J Physiol Renal Physiol; 2001 Aug; 281(2):F222-43. PubMed ID: 11457714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy Analysis of Hybrid Stochastic Simulation Algorithm on Linear Chain Reaction Systems.
    Chen M; Wang S; Cao Y
    Bull Math Biol; 2019 Aug; 81(8):3024-3052. PubMed ID: 29992454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models in nano-bioelectronics: simulation of ionic transport in voltage operated channels.
    Longaretti M; Marino G; Chini B; Jerome JW; Sacco R
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3686-94. PubMed ID: 19051926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transitions and Instabilities in Imperfect Ion-Selective Membranes.
    Schiffbauer J; Demekhin E; Ganchenko G
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational modeling of ion transport through nanopores.
    Modi N; Winterhalter M; Kleinekathöfer U
    Nanoscale; 2012 Oct; 4(20):6166-80. PubMed ID: 23198289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LASSIE: simulating large-scale models of biochemical systems on GPUs.
    Tangherloni A; Nobile MS; Besozzi D; Mauri G; Cazzaniga P
    BMC Bioinformatics; 2017 May; 18(1):246. PubMed ID: 28486952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid finite element method for describing the electrical response of biological cells to applied fields.
    Ying W; Henriquez CS
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):611-20. PubMed ID: 17405368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.
    Liu JL; Eisenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012711. PubMed ID: 26274207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.