These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24010552)

  • 1. Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system.
    Jeong B; Cho H; Yu MF; Vakakis AF; McFarland DM; Bergman LA
    ACS Nano; 2013 Oct; 7(10):8547-53. PubMed ID: 24010552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Dynamics and Chaos of Microcantilever-Based TM-AFMs with Squeeze Film Damping Effects.
    Zhang WM; Meng G; Zhou JB; Chen JY
    Sensors (Basel); 2009; 9(5):3854-74. PubMed ID: 22412340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory.
    Abbasi M
    Micron; 2018 Apr; 107():20-27. PubMed ID: 29414132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.
    Jeong B; Cho H; Keum H; Kim S; Michael McFarland D; Bergman LA; King WP; Vakakis AF
    Nanotechnology; 2014 Nov; 25(46):465501. PubMed ID: 25361057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear damping and quasi-linear modelling.
    Elliott SJ; Ghandchi Tehrani M; Langley RS
    Philos Trans A Math Phys Eng Sci; 2015 Sep; 373(2051):. PubMed ID: 26303921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual nonlinear switching in branched carbon nanotube nanocomposites.
    Lacarbonara W; Guruva SK; Carboni B; Krause B; Janke A; Formica G; Lanzara G
    Sci Rep; 2023 Mar; 13(1):5185. PubMed ID: 36997554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces.
    Eslami S; Jalili N
    Ultramicroscopy; 2012 Jun; 117():31-45. PubMed ID: 22659234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.
    Bennett SD; Cockins L; Miyahara Y; Grütter P; Clerk AA
    Phys Rev Lett; 2010 Jan; 104(1):017203. PubMed ID: 20366389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation on the Impact of Excitation Amplitude on AFM-TM Microcantilever Beam System's Dynamic Characteristics and Implementation of an Equivalent Circuit.
    Song P; Li X; Cui J; Chen K; Chu Y
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.
    Gusev VE; Ni C; Lomonosov A; Shen Z
    Ultrasonics; 2015 Aug; 61():126-35. PubMed ID: 25937493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance-mode effect on microcantilever mass-sensing performance in air.
    Xia X; Li X
    Rev Sci Instrum; 2008 Jul; 79(7):074301. PubMed ID: 18681721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deconvolution of damping forces with a nonlinear microresonator.
    Elliott B; Behlow HW; Dickel D; Skove MJ; Rao AM; Keskar G
    Rev Sci Instrum; 2011 May; 82(5):055103. PubMed ID: 21639534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametric amplification and self-oscillation in a nanotube mechanical resonator.
    Eichler A; Chaste J; Moser J; Bachtold A
    Nano Lett; 2011 Jul; 11(7):2699-703. PubMed ID: 21615135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapping mode imaging and measurements with an inverted atomic force microscope.
    Chan SS; Green JB
    Langmuir; 2006 Jul; 22(15):6701-6. PubMed ID: 16831016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modal interactions of flexural and torsional vibrations in a microcantilever.
    Westra HJ; van der Zant HS; Venstra WJ
    Ultramicroscopy; 2012 Sep; 120():41-7. PubMed ID: 22796558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-ω and 3-ω temperature measurement of a heated microcantilever.
    Lee B; King WP
    Rev Sci Instrum; 2012 Jul; 83(7):074902. PubMed ID: 22852713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the tip mass and position on the AFM cantilever dynamics: coupling between bending, torsion and flexural modes.
    Mokhtari-Nezhad F; Saidi AR; Ziaei-Rad S
    Ultramicroscopy; 2009 Aug; 109(9):1193-202. PubMed ID: 19559530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor.
    Körner J
    Beilstein J Nanotechnol; 2018; 9():2546-2560. PubMed ID: 30345217
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery.
    Kim H; Lim DH; Oh HJ; Lee KY; Lee SJ
    Biomed Mater; 2011 Oct; 6(5):055005. PubMed ID: 21849724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring Viscosity Using the Hysteresis of the Non-Linear Response of a Self-Excited Cantilever.
    Mouro J; Paoletti P; Basso M; Tiribilli B
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.