BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24010626)

  • 1. Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri.
    Teixeira JS; Abdi R; Su MS; Schwab C; Gänzle MG
    Food Microbiol; 2013 Dec; 36(2):432-9. PubMed ID: 24010626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli.
    Teixeira JS; McNeill V; Gänzle MG
    Food Microbiol; 2012 Sep; 31(2):278-84. PubMed ID: 22608234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri.
    Schwab C; Walter J; Tannock GW; Vogel RF; Gänzle MG
    Syst Appl Microbiol; 2007 Sep; 30(6):433-43. PubMed ID: 17490840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and phenotypic analysis of carbohydrate metabolism and transport in Lactobacillus reuteri.
    Zhao X; Gänzle MG
    Int J Food Microbiol; 2018 May; 272():12-21. PubMed ID: 29505955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose.
    Trindade MI; Abratt VR; Reid SJ
    Appl Environ Microbiol; 2003 Jan; 69(1):24-32. PubMed ID: 12513973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of membrane lateral pressure on the expression of fructosyltransferases in Lactobacillus reuteri.
    Schwab C; Gänzle MG
    Syst Appl Microbiol; 2006 Mar; 29(2):89-99. PubMed ID: 16464690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of levan from sucrose using a thermostable levansucrase from Lactobacillus reuteri LTH5448.
    Ni D; Xu W; Bai Y; Zhang W; Zhang T; Mu W
    Int J Biol Macromol; 2018 Jul; 113():29-37. PubMed ID: 29425871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.
    Rattanaprasert M; van Pijkeren JP; Ramer-Tait AE; Quintero M; Kok CR; Walter J; Hutkins RW
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract.
    Walter J; Schwab C; Loach DM; Gänzle MG; Tannock GW
    Microbiology (Reading); 2008 Jan; 154(Pt 1):72-80. PubMed ID: 18174127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the roles of starch and sucrose in homo-exopolysaccharide formation by Lactobacillus reuteri 35-5.
    Bai Y; Dobruchowska JM; van der Kaaij RM; Gerwig GJ; Dijkhuizen L
    Carbohydr Polym; 2016 Oct; 151():29-39. PubMed ID: 27474540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions.
    Ozimek LK; Kralj S; van der Maarel MJEC; Dijkhuizen L
    Microbiology (Reading); 2006 Apr; 152(Pt 4):1187-1196. PubMed ID: 16549681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. γ-Glutamyl Cysteine Ligase of Lactobacillus reuteri Synthesizes γ-Glutamyl Dipeptides in Sourdough.
    Yan B; Chen YY; Wang W; Zhao J; Chen W; Gänzle M
    J Agric Food Chem; 2018 Nov; 66(46):12368-12375. PubMed ID: 30354106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.
    Gering M; Brückner R
    J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental influences on exopolysaccharide formation in Lactobacillus reuteri ATCC 55730.
    Arsköld E; Svensson M; Grage H; Roos S; Rådström P; van Niel EW
    Int J Food Microbiol; 2007 May; 116(1):159-67. PubMed ID: 17316859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121.
    Kralj S; Eeuwema W; Eckhardt TH; Dijkhuizen L
    FEBS J; 2006 Aug; 273(16):3735-42. PubMed ID: 16911522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactobacillus reuteri Strains Convert Starch and Maltodextrins into Homoexopolysaccharides Using an Extracellular and Cell-Associated 4,6-α-Glucanotransferase.
    Bai Y; Böger M; van der Kaaij RM; Woortman AJ; Pijning T; van Leeuwen SS; van Bueren AL; Dijkhuizen L
    J Agric Food Chem; 2016 Apr; 64(14):2941-52. PubMed ID: 26996545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of α-galacto-oligosaccharides formed via heterologous expression of α-galactosidases from Lactobacillus reuteri in Lactococcus lactis.
    Wang Y; Black BA; Curtis JM; Gänzle MG
    Appl Microbiol Biotechnol; 2014 Mar; 98(6):2507-17. PubMed ID: 23942880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of isomalto-oligosaccharides by Lactobacillus reuteri and bifidobacteria.
    Hu Y; Ketabi A; Buchko A; Gänzle MG
    Lett Appl Microbiol; 2013 Aug; 57(2):108-14. PubMed ID: 23565659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Lactobacillus curvatus TMW 1.624 dextransucrase and comparative characterization with Lactobacillus reuteri TMW 1.106 and Lactobacillus animalis TMW 1.971 dextransucrases.
    Rühmkorf C; Bork C; Mischnick P; Rübsam H; Becker T; Vogel RF
    Food Microbiol; 2013 May; 34(1):52-61. PubMed ID: 23498178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio.
    Kralj S; van Leeuwen SS; Valk V; Eeuwema W; Kamerling JP; Dijkhuizen L
    FEBS J; 2008 Dec; 275(23):6002-10. PubMed ID: 19016850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.