BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24011515)

  • 41. Nonantimicrobial drug targets for Clostridium difficile infections.
    Darkoh C; Deaton M; DuPont HL
    Future Microbiol; 2017 Sep; 12(11):975-985. PubMed ID: 28759258
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sialidases From
    Wang YH
    Front Cell Infect Microbiol; 2019; 9():462. PubMed ID: 31998664
    [No Abstract]   [Full Text] [Related]  

  • 43. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms.
    Carter GP; Larcombe S; Li L; Jayawardena D; Awad MM; Songer JG; Lyras D
    Int J Med Microbiol; 2014 Nov; 304(8):1147-59. PubMed ID: 25190355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antimicrobial susceptibilities of canine Clostridium difficile and Clostridium perfringens isolates to commonly utilized antimicrobial drugs.
    Marks SL; Kather EJ
    Vet Microbiol; 2003 Jun; 94(1):39-45. PubMed ID: 12742714
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A high-throughput screening approach to anthrax lethal factor inhibition.
    Johnson SL; Chen LH; Pellecchia M
    Bioorg Chem; 2007 Aug; 35(4):306-12. PubMed ID: 17320146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation and binding-mode prediction of thiopyrone-based inhibitors of anthrax lethal factor.
    Lewis JA; Mongan J; McCammon JA; Cohen SM
    ChemMedChem; 2006 Jul; 1(7):694-7. PubMed ID: 16902919
    [No Abstract]   [Full Text] [Related]  

  • 47. [Staphylococcal coagglutination for the detection of the enterotoxin of Clostridium perfringens].
    Dobosch D
    Rev Argent Microbiol; 1983; 15(3):163-8. PubMed ID: 6101068
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis and evaluation of a non-radioactive gene probe for the detection of C.perfringens alpha toxin.
    Schlapp T; Blaha I; Bauerfeind R; Wieler LH; Schoepe H; Weiss R; Baljer G
    Mol Cell Probes; 1995 Apr; 9(2):101-9. PubMed ID: 7603469
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A review of analytical methods for the detection of bacterial toxins.
    Pimbley DW; Patel PD
    Symp Ser Soc Appl Microbiol; 1998; 27():98S-109S. PubMed ID: 9750366
    [No Abstract]   [Full Text] [Related]  

  • 50. Holin-Dependent Secretion of the Large Clostridial Toxin TpeL by Clostridium perfringens.
    Saadat A; Melville SB
    J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33526612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts.
    Nagahama M; Yamaguchi A; Hagiyama T; Ohkubo N; Kobayashi K; Sakurai J
    Infect Immun; 2004 Jun; 72(6):3267-75. PubMed ID: 15155629
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Prevalence, Genotypic and Phenotypic Characterization and Antibiotic Resistance Profile of
    Mohiuddin M; Iqbal Z; Siddique A; Liao S; Salamat MKF; Qi N; Din AM; Sun M
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33066416
    [No Abstract]   [Full Text] [Related]  

  • 53. Beta-cyclodextrin derivatives that inhibit anthrax lethal toxin.
    Karginov VA; Yohannes A; Robinson TM; Fahmi NE; Alibek K; Hecht SM
    Bioorg Med Chem; 2006 Jan; 14(1):33-40. PubMed ID: 16169738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The enteric toxins of Clostridium perfringens.
    Smedley JG; Fisher DJ; Sayeed S; Chakrabarti G; McClane BA
    Rev Physiol Biochem Pharmacol; 2004; 152():183-204. PubMed ID: 15517462
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clostridium perfringens epsilon-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes.
    Miyata S; Minami J; Tamai E; Matsushita O; Shimamoto S; Okabe A
    J Biol Chem; 2002 Oct; 277(42):39463-8. PubMed ID: 12177068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preformed bacterial toxins.
    Crane JK
    Clin Lab Med; 1999 Sep; 19(3):583-99. PubMed ID: 10549427
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the ADP-ribosylation of actin by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin.
    Aktories K; Geipel U; Wille M; Just I
    J Physiol (Paris); 1990; 84(4):262-6. PubMed ID: 2079662
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus--United States, 1998-2008.
    Bennett SD; Walsh KA; Gould LH
    Clin Infect Dis; 2013 Aug; 57(3):425-33. PubMed ID: 23592829
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d'Ivoire and their antimicrobial susceptibility.
    Kouassi KA; Dadie AT; N'Guessan KF; Dje KM; Loukou YG
    Anaerobe; 2014 Aug; 28():90-4. PubMed ID: 24944124
    [TBL] [Abstract][Full Text] [Related]  

  • 60. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.
    Schnell L; Mittler AK; Sadi M; Popoff MR; Schwan C; Aktories K; Mattarei A; Azarnia Tehran D; Montecucco C; Barth H
    Toxins (Basel); 2016 Apr; 8(4):101. PubMed ID: 27043629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.