These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 24011578)

  • 21. Evidence for the involvement of epigenetics in the progression of renal fibrogenesis.
    Tampe B; Zeisberg M
    Nephrol Dial Transplant; 2014 Feb; 29 Suppl 1():i1-i8. PubMed ID: 24046191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. lnflammation-induced epigenetic switches in cancer.
    Rokavec M; Öner MG; Hermeking H
    Cell Mol Life Sci; 2016 Jan; 73(1):23-39. PubMed ID: 26394635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1.
    Lawson JS; Liu HH; Syme HM; Purcell R; Wheeler-Jones CPD; Elliott J
    PLoS One; 2018; 13(8):e0202577. PubMed ID: 30138414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. microRNA-206 overexpression inhibits epithelial-mesenchymal transition and glomerulosclerosis in rats with chronic kidney disease by inhibiting JAK/STAT signaling pathway.
    Zhao SQ; Shen ZC; Gao BF; Han P
    J Cell Biochem; 2019 Sep; 120(9):14604-14617. PubMed ID: 31148248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic potential of microRNAs for the treatment of renal fibrosis and CKD.
    Lv W; Fan F; Wang Y; Gonzalez-Fernandez E; Wang C; Yang L; Booz GW; Roman RJ
    Physiol Genomics; 2018 Jan; 50(1):20-34. PubMed ID: 29127220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic Regulation of Endothelial-to-Mesenchymal Transition in Chronic Heart Disease.
    Hulshoff MS; Xu X; Krenning G; Zeisberg EM
    Arterioscler Thromb Vasc Biol; 2018 Sep; 38(9):1986-1996. PubMed ID: 30354260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long non-coding RNAs as emerging regulators of miRNAs and epigenetics in diabetes-related chronic kidney disease.
    Shelke V; Kale A; Sankrityayan H; Anders HJ; Gaikwad AB
    Arch Physiol Biochem; 2024 Apr; 130(2):230-241. PubMed ID: 34986074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Klotho recovery by genistein via promoter histone acetylation and DNA demethylation mitigates renal fibrosis in mice.
    Li Y; Chen F; Wei A; Bi F; Zhu X; Yin S; Lin W; Cao W
    J Mol Med (Berl); 2019 Apr; 97(4):541-552. PubMed ID: 30806715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adenovirus-mediated P311 ameliorates renal fibrosis through inhibition of epithelial-mesenchymal transition via TGF-β1-Smad-ILK pathway in unilateral ureteral obstruction rats.
    Qi FH; Cai PP; Liu X; Si GM
    Int J Mol Med; 2018 May; 41(5):3015-3023. PubMed ID: 29436600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epigenetic regulation of epithelial to mesenchymal transition.
    Huangyang P; Shang Y
    Curr Cancer Drug Targets; 2013 Nov; 13(9):973-85. PubMed ID: 24168185
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions.
    Mas VR; Le TH; Maluf DG
    Transplantation; 2016 Jan; 100(1):23-38. PubMed ID: 26356174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MiR-27b-3p inhibits the progression of renal fibrosis via suppressing STAT1.
    Bai L; Lin Y; Xie J; Zhang Y; Wang H; Zheng D
    Hum Cell; 2021 Mar; 34(2):383-393. PubMed ID: 33454903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway.
    Wang X; Xue N; Zhao S; Shi Y; Ding X; Fang Y
    Cell Death Dis; 2020 Aug; 11(8):620. PubMed ID: 32796834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Central role of dysregulation of TGF-β/Smad in CKD progression and potential targets of its treatment.
    Chen L; Yang T; Lu DW; Zhao H; Feng YL; Chen H; Chen DQ; Vaziri ND; Zhao YY
    Biomed Pharmacother; 2018 May; 101():670-681. PubMed ID: 29518614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent developments in epigenetics of acute and chronic kidney diseases.
    Reddy MA; Natarajan R
    Kidney Int; 2015 Aug; 88(2):250-61. PubMed ID: 25993323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigenome-wide association studies identify DNA methylation associated with kidney function.
    Chu AY; Tin A; Schlosser P; Ko YA; Qiu C; Yao C; Joehanes R; Grams ME; Liang L; Gluck CA; Liu C; Coresh J; Hwang SJ; Levy D; Boerwinkle E; Pankow JS; Yang Q; Fornage M; Fox CS; Susztak K; Köttgen A
    Nat Commun; 2017 Nov; 8(1):1286. PubMed ID: 29097680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells.
    Ke XS; Qu Y; Cheng Y; Li WC; Rotter V; Øyan AM; Kalland KH
    BMC Genomics; 2010 Nov; 11():669. PubMed ID: 21108828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kidney fibrosis: from mechanisms to therapeutic medicines.
    Huang R; Fu P; Ma L
    Signal Transduct Target Ther; 2023 Mar; 8(1):129. PubMed ID: 36932062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs.
    Sankrityayan H; Kulkarni YA; Gaikwad AB
    Pharmacol Res; 2019 Mar; 141():574-585. PubMed ID: 30695734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms.
    He L; Wei Q; Liu J; Yi M; Liu Y; Liu H; Sun L; Peng Y; Liu F; Venkatachalam MA; Dong Z
    Kidney Int; 2017 Nov; 92(5):1071-1083. PubMed ID: 28890325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.