These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 24011715)

  • 1. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.
    Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F
    Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-release of cells and polymeric nanoparticles from sacrificial microfibers enhances nonviral gene delivery inside 3D hydrogels.
    Madl CM; Keeney M; Li X; Han LH; Yang F
    Tissue Eng Part C Methods; 2014 Oct; 20(10):798-805. PubMed ID: 24483329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells.
    Li Y; Yang C; Khan M; Liu S; Hedrick JL; Yang YY; Ee PL
    Biomaterials; 2012 Sep; 33(27):6533-41. PubMed ID: 22704846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Stiff Nanocomposite Hydrogels at Ultralow Nanoparticle Content.
    Jaiswal MK; Xavier JR; Carrow JK; Desai P; Alge D; Gaharwar AK
    ACS Nano; 2016 Jan; 10(1):246-56. PubMed ID: 26670176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-viral vector delivery from PEG-hyaluronic acid hydrogels.
    Wieland JA; Houchin-Ray TL; Shea LD
    J Control Release; 2007 Jul; 120(3):233-41. PubMed ID: 17582640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation.
    Siegman S; Truong NF; Segura T
    Acta Biomater; 2015 Dec; 28():45-54. PubMed ID: 26391497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in situ forming collagen-PEG hydrogel for tissue regeneration.
    Sargeant TD; Desai AP; Banerjee S; Agawu A; Stopek JB
    Acta Biomater; 2012 Jan; 8(1):124-32. PubMed ID: 21911086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupled control of stiffness and permeability with a cell-encapsulating poly(ethylene glycol) dimethacrylate hydrogel.
    Cha C; Kim SY; Cao L; Kong H
    Biomaterials; 2010 Jun; 31(18):4864-71. PubMed ID: 20347136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks.
    Liang J; Guo Z; Timmerman A; Grijpma D; Poot A
    Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel.
    Singh D; Tripathi A; Nayak V; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(13):1733-51. PubMed ID: 20843432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
    Wang LS; Chung JE; Chan PP; Kurisawa M
    Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogels based on dual curable chitosan-graft-polyethylene glycol-graft-methacrylate: application to layer-by-layer cell encapsulation.
    Poon YF; Cao Y; Liu Y; Chan V; Chan-Park MB
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):2012-25. PubMed ID: 20568698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy.
    Kim J; Kang Y; Tzeng SY; Green JJ
    Acta Biomater; 2016 Sep; 41():293-301. PubMed ID: 27262740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
    Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W
    J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.