These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 2401210)

  • 1. Early onset of phenotype and cell patterning in the embryonic zebrafish retina.
    Larison KD; Bremiller R
    Development; 1990 Jul; 109(3):567-76. PubMed ID: 2401210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic.
    Stenkamp DL; Hisatomi O; Barthel LK; Tokunaga F; Raymond PA
    Invest Ophthalmol Vis Sci; 1996 Feb; 37(2):363-76. PubMed ID: 8603841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish.
    Ochocinska MJ; Hitchcock PF
    J Comp Neurol; 2007 Mar; 501(1):1-12. PubMed ID: 17206615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental patterning of rod and cone photoreceptors in embryonic zebrafish.
    Raymond PA; Barthel LK; Curran GA
    J Comp Neurol; 1995 Sep; 359(4):537-50. PubMed ID: 7499546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina.
    Raymond PA; Barthel LK
    Int J Dev Biol; 2004; 48(8-9):935-45. PubMed ID: 15558484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic Müller glial scaffolding supports a multiplex lattice mosaic of photoreceptors in zebrafish retina.
    Nagashima M; Hadidjojo J; Barthel LK; Lubensky DK; Raymond PA
    Neural Dev; 2017 Nov; 12(1):20. PubMed ID: 29141686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio.
    Schmitt EA; Dowling JE
    J Comp Neurol; 1996 Jul; 371(2):222-34. PubMed ID: 8835728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development of photoreceptors in the ventral retina of the zebrafish embryo.
    Kljavin IJ
    J Comp Neurol; 1987 Jun; 260(3):461-71. PubMed ID: 3597842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early emergence of photoreceptor mosaicism in the primate retina revealed by a novel cone-specific monoclonal antibody.
    Wikler KC; Rakic P; Bhattacharyya N; Macleish PR
    J Comp Neurol; 1997 Jan; 377(4):500-8. PubMed ID: 9007188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of the cone photoreceptor mosaic in the mouse retina revealed by fluorescent cones in transgenic mice.
    Fei Y
    Mol Vis; 2003 Feb; 9():31-42. PubMed ID: 12592228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny of cone photoreceptor mosaics in zebrafish.
    Allison WT; Barthel LK; Skebo KM; Takechi M; Kawamura S; Raymond PA
    J Comp Neurol; 2010 Oct; 518(20):4182-95. PubMed ID: 20878782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of photoreceptor-generating retinal progenitors revealed by prolonged retinoic acid exposure.
    Stevens CB; Cameron DA; Stenkamp DL
    BMC Dev Biol; 2011 Aug; 11():51. PubMed ID: 21878117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterning the cone mosaic array in zebrafish retina requires specification of ultraviolet-sensitive cones.
    Raymond PA; Colvin SM; Jabeen Z; Nagashima M; Barthel LK; Hadidjojo J; Popova L; Pejaver VR; Lubensky DK
    PLoS One; 2014; 9(1):e85325. PubMed ID: 24465536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Embryonic fissure and photoreceptor differentiation in the eye of adult Garra rufa Heckel 1843 (Cyprinidae, Teleostei).
    al-Adhami MA; Qar J; al Khodur M
    Folia Biol (Krakow); 2001; 49(3-4):183-90. PubMed ID: 11987455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeuroD regulates proliferation of photoreceptor progenitors in the retina of the zebrafish.
    Ochocinska MJ; Hitchcock PF
    Mech Dev; 2009; 126(3-4):128-41. PubMed ID: 19121642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid alters photoreceptor development in vivo.
    Hyatt GA; Schmitt EA; Fadool JM; Dowling JE
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13298-303. PubMed ID: 8917585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ontogeny of the photoreceptors in the embryonic retina of the viviparous guppy, Poecilia reticulata P. (Teleostei). An electron-microscopical study.
    Kunz YW; Ennis S; Wise C
    Cell Tissue Res; 1983; 230(3):469-86. PubMed ID: 6850777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cone mosaic development in the goldfish retina is independent of rod neurogenesis and differentiation.
    Wan J; Stenkamp DL
    J Comp Neurol; 2000 Jul; 423(2):227-42. PubMed ID: 10867656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of cone mosaic of zebrafish retina.
    Tohya S; Mochizuki A; Iwasa Y
    J Theor Biol; 1999 Sep; 200(2):231-44. PubMed ID: 10504288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genesis of rods in the zebrafish retina occurs in a microenvironment provided by polysialic acid-expressing Müller glia.
    Kustermann S; Hildebrandt H; Bolz S; Dengler K; Kohler K
    J Comp Neurol; 2010 Mar; 518(5):636-46. PubMed ID: 20034055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.