BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24012134)

  • 1. Life cycle assessment of mobility options using wood based fuels--comparison of selected environmental effects and costs.
    Weinberg J; Kaltschmitt M
    Bioresour Technol; 2013 Dec; 150():420-8. PubMed ID: 24012134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways.
    Rehl T; Müller J
    J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.
    Strogen B; Horvath A; Zilberman D
    Bioresour Technol; 2013 Dec; 150():476-85. PubMed ID: 24119498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ethanol on vehicle energy efficiency and implications on ethanol life-cycle greenhouse gas analysis.
    Yan X; Inderwildi OR; King DA; Boies AM
    Environ Sci Technol; 2013 Jun; 47(11):5535-44. PubMed ID: 23627549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life cycle assessment of ethanol derived from sawdust.
    Roy P; Dutta A
    Bioresour Technol; 2013 Dec; 150():407-11. PubMed ID: 23993286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hydrogenated vegetable oil and biodiesel effects on combustion, unregulated and regulated gaseous pollutants and DPF regeneration procedure in a Euro6 car.
    Pechout M; Kotek M; Jindra P; Macoun D; Hart J; Vojtisek-Lom M
    Sci Total Environ; 2019 Dec; 696():133748. PubMed ID: 31454607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emissions from U.S. waste collection vehicles.
    Maimoun MA; Reinhart DR; Gammoh FT; McCauley Bush P
    Waste Manag; 2013 May; 33(5):1079-89. PubMed ID: 23434127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessments on emergy and greenhouse gas emissions of internal combustion engine automobiles and electric automobiles in the USA.
    Jing R; Yuan C; Rezaei H; Qian J; Zhang Z
    J Environ Sci (China); 2020 Apr; 90():297-309. PubMed ID: 32081326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.
    Pucker J; Jungmeier G; Siegl S; Pötsch EM
    Animal; 2013 Jun; 7 Suppl 2():283-91. PubMed ID: 23739470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels.
    Lobo P; Hagen DE; Whitefield PD
    Environ Sci Technol; 2011 Dec; 45(24):10744-9. PubMed ID: 22043875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.
    Meyer PE; Green EH; Corbett JJ; Mas C; Winebrake JJ
    J Air Waste Manag Assoc; 2011 Mar; 61(3):285-94. PubMed ID: 21416755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.
    Petzold A; Lauer P; Fritsche U; Hasselbach J; Lichtenstern M; Schlager H; Fleischer F
    Environ Sci Technol; 2011 Dec; 45(24):10394-400. PubMed ID: 22044020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV).
    Parikh A; Shah M; Prajapati M
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57236-57252. PubMed ID: 37010685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process.
    Roy P; Dutta A; Deen B
    Bioresour Technol; 2015 Sep; 192():185-91. PubMed ID: 26038322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.