These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2401215)

  • 1. The influence of cell interactions and tissue mass on differentiation of sea urchin mesomeres.
    Khaner O; Wilt F
    Development; 1990 Jul; 109(3):625-34. PubMed ID: 2401215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of different vegetal cells with mesomeres during early stages of sea urchin development.
    Khaner O; Wilt F
    Development; 1991 Jul; 112(3):881-90. PubMed ID: 1935693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
    Henry JJ; Amemiya S; Wray GA; Raff RA
    Dev Biol; 1989 Nov; 136(1):140-53. PubMed ID: 2806717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of Micromeres, Mesomeres, and Macromeres of 16-cell Stage Sea Urchin Embryos by Elutriation*: (sea urchin embryo/blastomere/elutriation/micromere/mesomere/macromere).
    Yamaguchi M; Kinoshita T; Ohba Y
    Dev Growth Differ; 1994 Aug; 36(4):381-387. PubMed ID: 37281624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo.
    Masui M; Kominami T
    Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized distribution of L-type calcium channels in early sea urchin embryos.
    Dale B; Yazaki I; Tosti E
    Am J Physiol; 1997 Sep; 273(3 Pt 1):C822-5. PubMed ID: 9316401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone modifications accompanying the onset of developmental commitment.
    Chambers SA; Shaw BR
    Dev Biol; 1987 Dec; 124(2):523-31. PubMed ID: 3678612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPECIES SPECIFIC PATTERN OF CILIOGENESIS IN DEVELOPING SEA URCHIN EMBRYOS.
    Masuda M
    Dev Growth Differ; 1979; 21(6):545-552. PubMed ID: 37281736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
    Livingston BT; Wilt FH
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3669-73. PubMed ID: 2726745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
    Kenny AP; Kozlowski D; Oleksyn DW; Angerer LM; Angerer RC
    Development; 1999 Dec; 126(23):5473-83. PubMed ID: 10556071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Stereometric Analysis of Karyokinesis, Cytokinesis and Cell Arrangements during and following Fourth Cleavage Period in the Sea Urchin, Lytechinus variegatus: (sea urchin embryo/cell division patterns/stereo imaging/3-D reconstruction).
    Summers RG; Morrill JB; Leith A; Marko M; Piston DW; Stonebraker AT
    Dev Growth Differ; 1993 Feb; 35(1):41-57. PubMed ID: 37280928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-cell interactions and the role of micromeres in the control of the mitotic pattern in sea urchin embryos.
    Andreuccetti P; Filosa S; Monroy A; Parisi E
    Prog Clin Biol Res; 1982; 85 Pt B():21-9. PubMed ID: 7122568
    [No Abstract]   [Full Text] [Related]  

  • 16. Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole.
    Yazaki I; Dale B; Tosti E
    Dev Biol; 1999 Aug; 212(2):503-10. PubMed ID: 10433838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete regulation of development throughout metamorphosis of sea urchin embryos devoid of macromeres.
    Amemiya S
    Dev Growth Differ; 1996 Oct; 38(5):465-476. PubMed ID: 37281784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of membrane excitability in isolated cleavage-arrested blastomeres from early ascidian embryos.
    Okado H; Takahashi K
    J Physiol; 1990 Aug; 427():583-602. PubMed ID: 2213608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourth cleavage of sea urchin blastomeres: microtubule patterns and myosin localization in equal and unequal cell divisions.
    Schroeder TE
    Dev Biol; 1987 Nov; 124(1):9-22. PubMed ID: 3311851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.