These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 2401215)

  • 21. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1989 Apr; 132(2):458-70. PubMed ID: 2924998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micromere-specific cell surface proteins of 16-cell stage sea urchin embryos.
    De Simone DW; Spiegel M
    Exp Cell Res; 1985 Jan; 156(1):7-14. PubMed ID: 3965293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The micro1 gene is necessary and sufficient for micromere differentiation and mid/hindgut-inducing activity in the sea urchin embryo.
    Yamazaki A; Kawabata R; Shiomi K; Amemiya S; Sawaguchi M; Mitsunaga-Nakatsubo K; Yamaguchi M
    Dev Genes Evol; 2005 Sep; 215(9):450-59. PubMed ID: 16078091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary modification of AGS protein contributes to formation of micromeres in sea urchins.
    Poon J; Fries A; Wessel GM; Yajima M
    Nat Commun; 2019 Aug; 10(1):3779. PubMed ID: 31439829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micromeres are required for normal vegetal plate specification in sea urchin embryos.
    Ransick A; Davidson EH
    Development; 1995 Oct; 121(10):3215-22. PubMed ID: 7588056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover.
    Angerer LM; Newman LA; Angerer RC
    Development; 2005 Mar; 132(5):999-1008. PubMed ID: 15689377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass isolation and culture of sea urchin micromeres.
    Harkey MA; Whiteley AH
    In Vitro Cell Dev Biol; 1985 Feb; 21(2):108-13. PubMed ID: 4008427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Centrifugal elutriation of large fragile cells: isolation of RNA from fixed embryonic blastomeres.
    Nasir A; Reynolds SD; Keng PC; Angerer LM; Angerer RC
    Anal Biochem; 1992 May; 203(1):22-6. PubMed ID: 1381875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of cell fate in sea urchin embryos.
    Livingston BT; Wilt FH
    Bioessays; 1990 Mar; 12(3):115-9. PubMed ID: 2182005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos.
    Holy J; Schatten G
    J Cell Sci; 1991 Mar; 98 ( Pt 3)():423-31. PubMed ID: 2055969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
    Hurley DL; Angerer LM; Angerer RC
    Development; 1989 Jul; 106(3):567-79. PubMed ID: 2480880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
    Izumi-Kurotani A; Kiyomoto M
    Adv Space Biol Med; 2003; 9():83-99. PubMed ID: 14631630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination and morphogenesis in the sea urchin embryo.
    Wilt FH
    Development; 1987 Aug; 100(4):559-76. PubMed ID: 3443047
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary modification of specification for the endomesoderm in the direct developing echinoid Peronella japonica: loss of the endomesoderm-inducing signal originating from micromeres.
    Iijima M; Ishizuka Y; Nakajima Y; Amemiya S; Minokawa T
    Dev Genes Evol; 2009 May; 219(5):235-47. PubMed ID: 19437036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A "micromere model" of cellular interactions in sea urchin embryos].
    Shmukler IuB
    Biofizika; 2010; 55(3):451-9. PubMed ID: 20586324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.