These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24012761)

  • 1. Differential translation tunes uneven production of operon-encoded proteins.
    Quax TE; Wolf YI; Koehorst JJ; Wurtzel O; van der Oost R; Ran W; Blombach F; Makarova KS; Brouns SJ; Forster AC; Wagner EG; Sorek R; Koonin EV; van der Oost J
    Cell Rep; 2013 Sep; 4(5):938-44. PubMed ID: 24012761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ribosome in action: Tuning of translational efficiency and protein folding.
    Rodnina MV
    Protein Sci; 2016 Aug; 25(8):1390-406. PubMed ID: 27198711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences on translation initiation and early elongation by the messenger RNA region flanking the initiation codon at the 3' side.
    Stenström CM; Isaksson LA
    Gene; 2002 Apr; 288(1-2):1-8. PubMed ID: 12034488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed.
    Lyu X; Yang Q; Zhao F; Liu Y
    Nucleic Acids Res; 2021 Sep; 49(16):9404-9423. PubMed ID: 34417614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts.
    Mäkeläinen KJ; Mäkinen K
    Gene; 2007 Apr; 391(1-2):275-84. PubMed ID: 17331675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome reinitiation can explain length-dependent translation of messenger RNA.
    Rogers DW; Böttcher MA; Traulsen A; Greig D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005592. PubMed ID: 28598992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies.
    Spencer PS; Siller E; Anderson JF; Barral JM
    J Mol Biol; 2012 Sep; 422(3):328-35. PubMed ID: 22705285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operons in eukaryotes.
    Blumenthal T
    Brief Funct Genomic Proteomic; 2004 Nov; 3(3):199-211. PubMed ID: 15642184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Wide Profiling of Alternative Translation Initiation Sites.
    Gao X; Wan J; Qian SB
    Methods Mol Biol; 2016; 1358():303-16. PubMed ID: 26463392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution.
    Gelsinger DR; Dallon E; Reddy R; Mohammad F; Buskirk AR; DiRuggiero J
    Nucleic Acids Res; 2020 Jun; 48(10):5201-5216. PubMed ID: 32382758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid mRNA translation.
    Sugiura M
    Methods Mol Biol; 2014; 1132():73-91. PubMed ID: 24599847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation initiation rate determines the impact of ribosome stalling on bacterial protein synthesis.
    Hersch SJ; Elgamal S; Katz A; Ibba M; Navarre WW
    J Biol Chem; 2014 Oct; 289(41):28160-71. PubMed ID: 25148683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon optimality, bias and usage in translation and mRNA decay.
    Hanson G; Coller J
    Nat Rev Mol Cell Biol; 2018 Jan; 19(1):20-30. PubMed ID: 29018283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A predictive biophysical model of translational coupling to coordinate and control protein expression in bacterial operons.
    Tian T; Salis HM
    Nucleic Acids Res; 2015 Aug; 43(14):7137-51. PubMed ID: 26117546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying translational coupling in E. coli synthetic operons using RBS modulation and fluorescent reporters.
    Levin-Karp A; Barenholz U; Bareia T; Dayagi M; Zelcbuch L; Antonovsky N; Noor E; Milo R
    ACS Synth Biol; 2013 Jun; 2(6):327-36. PubMed ID: 23654261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement of the Escherichia coli trp operon attenuation control codons alters operon expression.
    Landick R; Yanofsky C; Choo K; Phung L
    J Mol Biol; 1990 Nov; 216(1):25-37. PubMed ID: 2231731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA stem-loop enhanced expression of previously non-expressible genes.
    Paulus M; Haslbeck M; Watzele M
    Nucleic Acids Res; 2004 May; 32(9):e78. PubMed ID: 15163763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling translation elongation efficiency: tRNA regulation of ribosome flux on the mRNA.
    Gorgoni B; Marshall E; McFarland MR; Romano MC; Stansfield I
    Biochem Soc Trans; 2014 Feb; 42(1):160-5. PubMed ID: 24450645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Codon Bias as a Means to Fine-Tune Gene Expression.
    Quax TE; Claassens NJ; Söll D; van der Oost J
    Mol Cell; 2015 Jul; 59(2):149-61. PubMed ID: 26186290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.