These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 24012844)

  • 21. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.
    Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R
    Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production.
    Chakraborty S; Mohanty D; Ghosh S; Das D
    J Biosci Bioeng; 2016 Sep; 122(3):294-300. PubMed ID: 26922477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of Fe(NO
    Choi JA; Kim DY; Seo YH; Han JI
    Bioresour Technol; 2016 Dec; 222():374-379. PubMed ID: 27744162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rapid, efficient and eco-friendly approach for simultaneous biomass harvesting and bioproducts extraction from microalgae: Dual flocculation between cationic surfactants and bio-polymer.
    Taghavijeloudar M; Yaqoubnejad P; Ahangar AK; Rezania S
    Sci Total Environ; 2023 Jan; 854():158717. PubMed ID: 36108873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions.
    Zhou X; Xia L; Ge H; Zhang D; Hu C
    Bioresour Technol; 2013 Jun; 138():131-5. PubMed ID: 23612171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of nutrient formulations on growth, lipid yield, carbon partitioning and biodiesel quality potential of Botryococcus sp. and Chlorella sp.
    Vishwakarma R; Dhar DW; Saxena S
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):7589-7600. PubMed ID: 30659489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.
    Cao H; Zhang Z; Wu X; Miao X
    Biomed Res Int; 2013; 2013():930686. PubMed ID: 24195081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass and lipid enhancement in Chlorella sp. with emphasis on biodiesel quality assessment through detailed FAME signature.
    Shekh AY; Shrivastava P; Gupta A; Krishnamurthi K; Devi SS; Mudliar SN
    Bioresour Technol; 2016 Feb; 201():276-86. PubMed ID: 26679050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.
    Bayat Tork M; Khalilzadeh R; Kouchakzadeh H
    Bioresour Technol; 2017 Nov; 243():583-588. PubMed ID: 28704739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative abundance of lipid types among Chlorella sp. and Scenedesmus sp. and ameliorating homogeneous acid catalytic conditions using central composite design (CCD) for maximizing fatty acid methyl ester yield.
    Mathimani T; Sekar M; Shanmugam S; Sabir JSM; Chi NTL; Pugazhendhi A
    Sci Total Environ; 2021 Jun; 771():144700. PubMed ID: 33736139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock.
    Ahmad AL; Mat Yasin NH; Derek CJ; Lim JK
    Environ Technol; 2014; 35(17-20):2244-53. PubMed ID: 25145177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.
    Ghosh S; Roy S; Das D
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3322-35. PubMed ID: 25690351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Harvesting of microalgae by flocculation with poly (γ-glutamic acid).
    Zheng H; Gao Z; Yin J; Tang X; Ji X; Huang H
    Bioresour Technol; 2012 May; 112():212-20. PubMed ID: 22425514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent.
    Pan Y; Alam MA; Wang Z; Huang D; Hu K; Chen H; Yuan Z
    Bioresour Technol; 2017 Aug; 238():157-163. PubMed ID: 28433903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomass production and identification of suitable harvesting technique for Chlorella sp. MJ 11/11 and Synechocystis PCC 6803.
    Lal A; Das D
    3 Biotech; 2016 Jun; 6(1):41. PubMed ID: 28330109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant.
    Huang WC; Park CW; Kim JD
    Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferric chloride based downstream process for microalgae based biodiesel production.
    Seo YH; Sung M; Kim B; Oh YK; Kim DY; Han JI
    Bioresour Technol; 2015 Apr; 181():143-7. PubMed ID: 25647024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Process design for augmentation and spectrofluorometric quantification of neutral lipid by judicious doping of pathway intermediate in the culture of marine Chlorella variabilis for biodiesel application.
    De Bhowmick G; Vegesna N; Sen R
    Bioresour Technol; 2015 Dec; 198():781-8. PubMed ID: 26454043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel method to harvest Chlorella sp. by co-flocculation/air flotation.
    Zhang H; Lin Z; Tan D; Liu C; Kuang Y; Li Z
    Biotechnol Lett; 2017 Jan; 39(1):79-84. PubMed ID: 27654824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.