These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 2401293)
1. A 1H-NMR study of electronic structure of the active site of Galeorhinus japonicus metmyoglobin. Yamamoto Y; Osawa A; Inoue Y; Chûjô R; Suzuki T Eur J Biochem; 1990 Aug; 192(1):225-9. PubMed ID: 2401293 [TBL] [Abstract][Full Text] [Related]
2. 1H NMR study of the dynamics of the pH modulation of axial coordination in Aplysia limacina (Val(E7)) and sperm whale double mutant His(E7)-->Val,Thr(E10)-->Arg metmyoglobin. Qin J; Pande U; La Mar GN; Ascoli F; Ascenzi P; Cutruzzolá F; Travaglini-Allocatelli C; Brunori M J Biol Chem; 1993 Nov; 268(32):24012-21. PubMed ID: 8226945 [TBL] [Abstract][Full Text] [Related]
3. NMR study of the molecular and electronic structure of the heme cavity of Aplysia metmyoglobin. Resonance assignments based on isotope labeling and proton nuclear Overhauser effect measurements. Pande U; La Mar GN; Lecomte JT; Ascoli F; Brunori M; Smith KM; Pandey RK; Parish DW; Thanabal V Biochemistry; 1986 Sep; 25(19):5638-46. PubMed ID: 3778878 [TBL] [Abstract][Full Text] [Related]
4. NMR study of Galeorhinus japonicus myoglobin. 1H-NMR evidence for a structural alteration on the active site of G. japonicus myoglobin upon azide ion binding. Yamamoto Y; Chûjô R; Suzuki T Eur J Biochem; 1991 Jun; 198(2):285-91. PubMed ID: 2040295 [TBL] [Abstract][Full Text] [Related]
5. Nuclear magnetic resonance studies of high-spin ferric hemoproteins. Morishmima I; Ogawa S; Inubushi T; Iizuka T Adv Biophys; 1978; 11():217-45. PubMed ID: 27954 [TBL] [Abstract][Full Text] [Related]
6. Proton nuclear magnetic resonance study of the molecular and electronic structure of the heme cavity in Aplysia cyanometmyoglobin. Peyton DH; La Mar GN; Pande U; Ascoli F; Smith KM; Pandey RK; Parish DW; Bolognesi M; Brunori M Biochemistry; 1989 May; 28(11):4880-7. PubMed ID: 2548594 [TBL] [Abstract][Full Text] [Related]
7. Dynamics and thermodynamics of acid-alkaline transitions in metmyoglobins lacking the usual distal histidine residue. Yamamoto Y; Suziki T; Hori H Biochim Biophys Acta; 1993 Dec; 1203(2):267-75. PubMed ID: 8268210 [TBL] [Abstract][Full Text] [Related]
8. 1H-NMR comparative study of the active site in shark (Galeorhinus japonicus), horse, and sperm whale deoxy myoglobins. Yamamoto Y; Iwafune K; Chûjô R; Inoue Y; Imai K; Suzuki T J Biochem; 1992 Sep; 112(3):414-20. PubMed ID: 1429532 [TBL] [Abstract][Full Text] [Related]
9. Assignment of 1H NMR resonances of histidine and other aromatic residues in met-, cyano-, oxy-, and (carbon monoxy)myoglobins. Carver JA; Bradbury JH Biochemistry; 1984 Oct; 23(21):4890-905. PubMed ID: 6498166 [TBL] [Abstract][Full Text] [Related]
10. NMR study of Galeorhinus japonicus myoglobin. 1H-NMR study of molecular structure of the heme cavity. Yamamoto Y; Iwafune K; Nanai N; Osawa A; Chûjô R; Suzuki T Eur J Biochem; 1991 Jun; 198(2):299-306. PubMed ID: 2040296 [TBL] [Abstract][Full Text] [Related]
11. NMR study of the active site of shark met-cyano myoglobins. Yamamoto Y; Suzuki T Biochim Biophys Acta; 1996 Mar; 1293(1):129-39. PubMed ID: 8652618 [TBL] [Abstract][Full Text] [Related]
12. Geminate carbon monoxide rebinding to a c-type haem. Silkstone G; Jasaitis A; Vos MH; Wilson MT Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930 [TBL] [Abstract][Full Text] [Related]
13. Heme methyl hyperfine shift pattern as a probe for determining the orientation of the functionally relevant proximal histidyl imidazole with respect to the heme in hemoproteins. Yamamoto Y; Nanai N; Chûjô R; Suzuki T FEBS Lett; 1990 May; 264(1):113-6. PubMed ID: 2338134 [TBL] [Abstract][Full Text] [Related]
14. Kinetic characterization of the acid-alkaline transition in Dolabella auricularia ferric myoglobin using 1H-NMR saturation transfer experiments. Yamamoto Y; Chüjô R; Inoue Y; Suzuki T FEBS Lett; 1992 Sep; 310(1):71-4. PubMed ID: 1526284 [TBL] [Abstract][Full Text] [Related]
15. 1H-NMR study of heme propanoate mobility in the active site of myoglobin from Galeorhinus japonicus. Yamamoto Y; Inoue Y; Chûjô R; Suzuki T Eur J Biochem; 1990 May; 189(3):567-73. PubMed ID: 2351136 [TBL] [Abstract][Full Text] [Related]
16. Reactivity of ferrous heme proteins at low pH. Traylor TG; Deardurff LA; Coletta M; Ascenzi P; Antonini E; Brunori M J Biol Chem; 1983 Oct; 258(20):12147-8. PubMed ID: 6630184 [TBL] [Abstract][Full Text] [Related]
17. Solution structure determination of the heme cavity in the E7 His-->Val cyano-met myoglobin point mutant based on the 1H NMR detected dipolar field of the iron: evidence for contraction of the heme pocket. Rajarathnam K; Qin J; La Mar GN; Chiu ML; Sligar SG Biochemistry; 1993 Jun; 32(21):5670-80. PubMed ID: 8504086 [TBL] [Abstract][Full Text] [Related]
18. Transient spectroscopy of the reaction of cyanide with ferrous myoglobin. Effect of distal side residues. Bellelli A; Antonini G; Brunori M; Springer BA; Sligar SG J Biol Chem; 1990 Nov; 265(31):18898-901. PubMed ID: 2229052 [TBL] [Abstract][Full Text] [Related]
19. Resonance Raman and absorption spectroscopic detection of distal histidine--fluoride interactions in human methemoglobin fluoride and sperm whale metmyoglobin fluoride: measurements of distal histidine ionization constants. Asher SA; Adams ML; Schuster TM Biochemistry; 1981 Jun; 20(12):3339-46. PubMed ID: 7260037 [TBL] [Abstract][Full Text] [Related]
20. Electrostatic modification of the active site of myoglobin: characterization of the proximal Ser92Asp variant. Lloyd E; Burk DL; Ferrer JC; Maurus R; Doran J; Carey PR; Brayer GD; Mauk AG Biochemistry; 1996 Sep; 35(36):11901-12. PubMed ID: 8794773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]