BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 24013173)

  • 1. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes.
    Hu L; Kim TM; Son MY; Kim SA; Holland CL; Tateishi S; Kim DH; Yew PR; Montagna C; Dumitrache LC; Hasty P
    Nature; 2013 Sep; 501(7468):569-72. PubMed ID: 24013173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51
    Ko JH; Son MY; Zhou Q; Molnarova L; Song L; Mlcouskova J; Jekabsons A; Montagna C; Krejci L; Hasty P
    Cell Rep; 2020 Dec; 33(12):108543. PubMed ID: 33357432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rad18 and Rnf8 facilitate homologous recombination by two distinct mechanisms, promoting Rad51 focus formation and suppressing the toxic effect of nonhomologous end joining.
    Kobayashi S; Kasaishi Y; Nakada S; Takagi T; Era S; Motegi A; Chiu RK; Takeda S; Hirota K
    Oncogene; 2015 Aug; 34(33):4403-11. PubMed ID: 25417706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair.
    Dumitrache LC; Hu L; Son MY; Li H; Wesevich A; Scully R; Stark J; Hasty P
    Genetics; 2011 Aug; 188(4):787-97. PubMed ID: 21546543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rad51 recruitment and exclusion of non-homologous end joining during homologous recombination at a Tus/Ter mammalian replication fork barrier.
    Willis NA; Panday A; Duffey EE; Scully R
    PLoS Genet; 2018 Jul; 14(7):e1007486. PubMed ID: 30024881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication fork stalling in WRN-deficient cells is overcome by prompt activation of a MUS81-dependent pathway.
    Franchitto A; Pirzio LM; Prosperi E; Sapora O; Bignami M; Pichierri P
    J Cell Biol; 2008 Oct; 183(2):241-52. PubMed ID: 18852298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SUMOylation regulates Rad18-mediated template switch.
    Branzei D; Vanoli F; Foiani M
    Nature; 2008 Dec; 456(7224):915-20. PubMed ID: 19092928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination.
    Zhao GY; Sonoda E; Barber LJ; Oka H; Murakawa Y; Yamada K; Ikura T; Wang X; Kobayashi M; Yamamoto K; Boulton SJ; Takeda S
    Mol Cell; 2007 Mar; 25(5):663-75. PubMed ID: 17349954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Drosophila Werner exonuclease participates in an exonuclease-independent response to replication stress.
    Bolterstein E; Rivero R; Marquez M; McVey M
    Genetics; 2014 Jun; 197(2):643-52. PubMed ID: 24709634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair.
    Ball LG; Hanna MD; Lambrecht AD; Mitchell BA; Ziola B; Cobb JA; Xiao W
    PLoS One; 2014; 9(10):e109292. PubMed ID: 25343618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats.
    Nguyen JHG; Viterbo D; Anand RP; Verra L; Sloan L; Richard GF; Freudenreich CH
    Nucleic Acids Res; 2017 May; 45(8):4519-4531. PubMed ID: 28175398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-replication repair suppresses duplication-mediated genome instability.
    Putnam CD; Hayes TK; Kolodner RD
    PLoS Genet; 2010 May; 6(5):e1000933. PubMed ID: 20463880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAD18 lives a double life: Its implication in DNA double-strand break repair.
    Ting L; Jun H; Junjie C
    DNA Repair (Amst); 2010 Dec; 9(12):1241-8. PubMed ID: 20971043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Break-induced replication orchestrates resection-dependent template switching.
    Zhang T; Rawal Y; Jiang H; Kwon Y; Sung P; Greenberg RA
    Nature; 2023 Jul; 619(7968):201-208. PubMed ID: 37316655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct functions of human RECQ helicases WRN and BLM in replication fork recovery and progression after hydroxyurea-induced stalling.
    Sidorova JM; Kehrli K; Mao F; Monnat R
    DNA Repair (Amst); 2013 Feb; 12(2):128-39. PubMed ID: 23253856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAD6-RAD18-RAD5-pathway-dependent tolerance to chronic low-dose ultraviolet light.
    Hishida T; Kubota Y; Carr AM; Iwasaki H
    Nature; 2009 Jan; 457(7229):612-5. PubMed ID: 19079240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks.
    Tsuji Y; Watanabe K; Araki K; Shinohara M; Yamagata Y; Tsurimoto T; Hanaoka F; Yamamura K; Yamaizumi M; Tateishi S
    Genes Cells; 2008 Apr; 13(4):343-54. PubMed ID: 18363965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.