These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24013222)

  • 1. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1.
    Zhang X; Li B; Wang Y; Guo Q; Lu X; Li S; Ma P
    Appl Microbiol Biotechnol; 2013 Nov; 97(21):9525-34. PubMed ID: 24013222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic and Transcriptomic Analyses to Elucidate Antifungal Mechanisms of
    Jin J; Yang RD; Cao H; Song GN; Cui F; Zhou S; Yuan J; Qi H; Wang JD; Chen J
    J Agric Food Chem; 2024 Aug; 72(31):17405-17416. PubMed ID: 39042819
    [No Abstract]   [Full Text] [Related]  

  • 3. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses.
    García-Gutiérrez L; Zeriouh H; Romero D; Cubero J; de Vicente A; Pérez-García A
    Microb Biotechnol; 2013 May; 6(3):264-74. PubMed ID: 23302493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocontrol Methods for the Management of
    Wang SY; Zhang YJ; Chen X; Shi XC; Herrera-Balandrano DD; Liu FQ; Laborda P
    Phytopathology; 2024 Jul; 114(7):1447-1457. PubMed ID: 38669603
    [No Abstract]   [Full Text] [Related]  

  • 5. Exploration of the Biocontrol Activity of
    Yuan H; Shi B; Wang Z; Qin G; Hou H; Tu H; Wang L
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895155
    [No Abstract]   [Full Text] [Related]  

  • 6. Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species.
    Walker R; Powell AA; Seddon B
    J Appl Microbiol; 1998 May; 84(5):791-801. PubMed ID: 9674133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering the distinct biocontrol activities of lipopeptides fengycin and surfactin through their differential impact on lipid membranes.
    Gilliard G; Demortier T; Boubsi F; Jijakli MH; Ongena M; De Clerck C; Deleu M
    Colloids Surf B Biointerfaces; 2024 Jul; 239():113933. PubMed ID: 38729019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Draft genome sequence of
    Peng W; Guo X; Shi H; Yang X
    Microbiol Resour Announc; 2024 Jul; 13(7):e0124923. PubMed ID: 38888324
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of bacterial volatile compounds in bacterial biology.
    Audrain B; Farag MA; Ryu CM; Ghigo JM
    FEMS Microbiol Rev; 2015 Mar; 39(2):222-33. PubMed ID: 25725014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans.
    Hunziker L; Bönisch D; Groenhagen U; Bailly A; Schulz S; Weisskopf L
    Appl Environ Microbiol; 2015 Feb; 81(3):821-30. PubMed ID: 25398872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview of the Antimicrobial Compounds Produced by Members of the
    Caulier S; Nannan C; Gillis A; Licciardi F; Bragard C; Mahillon J
    Front Microbiol; 2019; 10():302. PubMed ID: 30873135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A marine lipopeptides-producing Bacillus amyloliquefaciens HY2-1 with a broad-spectrum antifungal and antibacterial activity and its fermentation kinetics study.
    Huang LR; Ling XN; Peng SY; Tan MH; Yan LQ; Liang YY; Li GH; Li KT
    World J Microbiol Biotechnol; 2023 May; 39(8):196. PubMed ID: 37183209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of
    Wang WY; Kong WL; Liao YC; Zhu LH
    J Fungi (Basel); 2022 Sep; 8(10):. PubMed ID: 36294586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity.
    Luo C; Chen Y; Liu X; Wang X; Wang X; Li X; Zhao Y; Wei L
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4467-4481. PubMed ID: 30989253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens.
    Wu Y; Zhou J; Li C; Ma Y
    Microbiologyopen; 2019 Aug; 8(8):e00813. PubMed ID: 30907064
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Rabbee MF; Ali MS; Choi J; Hwang BS; Jeong SC; Baek KH
    Molecules; 2019 Mar; 24(6):. PubMed ID: 30884857
    [No Abstract]   [Full Text] [Related]  

  • 17. Biological control of plant pathogens by Bacillus species.
    Fira D; Dimkić I; Berić T; Lozo J; Stanković S
    J Biotechnol; 2018 Nov; 285():44-55. PubMed ID: 30172784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation.
    Zhang L; Sun C
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum.
    Gong AD; Li HP; Yuan QS; Song XS; Yao W; He WJ; Zhang JB; Liao YC
    PLoS One; 2015; 10(2):e0116871. PubMed ID: 25689464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.