These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24013257)

  • 1. Fluid dynamics of vitrectomy probes.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Iossa M; Placentino L; Ripandelli G
    Retina; 2014 Mar; 34(3):558-67. PubMed ID: 24013257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introducing new vitreous cutter blade shapes: a fluid dynamics study.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Iossa M; Placentino L; Ripandelli G
    Retina; 2014 Sep; 34(9):1896-904. PubMed ID: 24871998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instantaneous flow rate of vitreous cutter probes.
    Rossi T; Querzoli G; Angelini G; Rossi A; Malvasi C; Iossa M; Ripandelli G
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):8289-94. PubMed ID: 25414180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AXIAL ROTATION VITRECTOMY: Back to the Future? the Fluidics of a Prototype Vitreous Cutter Probe.
    Rossi T; Querzoli G; Angelini G; Malvasi C; Rossi A; Morini M; Iossa M; Ripandelli G
    Retina; 2016 Jul; 36(7):1252-9. PubMed ID: 26655617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 27-gauge instrument system for transconjunctival sutureless microincision vitrectomy surgery.
    Oshima Y; Wakabayashi T; Sato T; Ohji M; Tano Y
    Ophthalmology; 2010 Jan; 117(1):93-102.e2. PubMed ID: 19880185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance analysis of ultrahigh-speed vitreous cutter system.
    Ribeiro RM; Teixeira AG; Diniz B; Fernandes RB; Zhong Y; Kerns R; Humayun MS
    Retina; 2013 May; 33(5):928-32. PubMed ID: 23416511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitreous dynamics: vitreous flow analysis in 20-, 23-, and 25-gauge cutters.
    Magalhaes O; Chong L; DeBoer C; Bhadri P; Kerns R; Barnes A; Fang S; Humayun M
    Retina; 2008 Feb; 28(2):236-41. PubMed ID: 18301028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluidics of Single and Double Blade Guillotine Vitrectomy Probes in Balanced Salt Solution and Artificial Vitreous.
    Romano MR; Stocchino A; Ferrara M; Lagazzo A; Repetto R
    Transl Vis Sci Technol; 2018 Nov; 7(6):19. PubMed ID: 30564508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of Flow Dynamics of Dual-Blade to Single-Blade Beveled-Tip Vitreous Cutters.
    Inoue M; Koto T; Hirakata A
    Ophthalmic Res; 2022; 65(2):216-228. PubMed ID: 34942621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue attraction associated with 20-gauge, 23-gauge, and enhanced 25-gauge dual-pneumatic vitrectomy probes.
    Dugel PU; Zhou J; Abulon DJ; Buboltz DC
    Retina; 2012 Oct; 32(9):1761-6. PubMed ID: 22466488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid dynamics in three 25-gauge vitrectomy systems: principles for use in vitreoretinal surgery.
    Magalhães O; Maia M; Maia A; Penha F; Dib E; Farah ME; Schor P
    Acta Ophthalmol; 2008 Mar; 86(2):156-9. PubMed ID: 18373797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluid Dynamic Assessment of Hypersonic and Guillotine Vitrectomy Probes in Viscoelastic Vitreous Substitutes.
    Stocchino A; Nepita I; Repetto R; Dodero A; Castellano M; Ferrara M; Romano MR
    Transl Vis Sci Technol; 2020 May; 9(6):9. PubMed ID: 32821506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of cutting and aspirating properties of vitreous cutters with high-speed camera.
    Sato T; Kusaka S; Oshima Y; Fujikado T
    Retina; 2008 May; 28(5):749-54. PubMed ID: 18463521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance analysis of new-generation vitreous cutters.
    Fang SY; DeBoer CM; Humayun MS
    Graefes Arch Clin Exp Ophthalmol; 2008 Jan; 246(1):61-7. PubMed ID: 17876598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidics comparison between dual pneumatic and spring return high-speed vitrectomy systems.
    Brant Fernandes RA; Diniz B; Falabella P; Ribeiro R; Teixeira AG; Magalhães O; Moraes N; Maia A; Farah ME; Maia M; Humayun MS
    Ophthalmic Surg Lasers Imaging Retina; 2015 Jan; 46(1):68-72. PubMed ID: 25559512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IN VITRO FLOW ANALYSIS OF NOVEL DOUBLE-CUTTING, OPEN-PORT, ULTRAHIGH-SPEED VITRECTOMY SYSTEMS.
    Zehetner C; Moelgg M; Bechrakis E; Linhart C; Bechrakis NE
    Retina; 2018 Dec; 38(12):2309-2316. PubMed ID: 29016453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FLOW DYNAMICS OF BEVELED-TIP AND FLAT-TIP VITREOUS CUTTERS.
    Inoue M; Koto T; Hirakata A
    Retina; 2021 Feb; 41(2):445-453. PubMed ID: 32271276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.
    Dugel PU; Abulon DJ; Dimalanta R
    Retina; 2015 May; 35(5):915-20. PubMed ID: 25621945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guillotine performance: duty cycle analysis of vitrectomy systems.
    Magalhaes O; Chong L; DeBoer C; Bhadri P; Kerns R; Barnes A; Fang S; Schor P; Humayun M
    Retin Cases Brief Rep; 2009; 3(1):64-7. PubMed ID: 25390843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitreoretinal traction created by conventional cutters during vitrectomy.
    Teixeira A; Chong LP; Matsuoka N; Arana L; Kerns R; Bhadri P; Humayun M
    Ophthalmology; 2010 Jul; 117(7):1387-92.e2. PubMed ID: 20176400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.