BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24013422)

  • 1. Measurement and modeling of transcriptional noise in the cell cycle regulatory network.
    Ball DA; Adames NR; Reischmann N; Barik D; Franck CT; Tyson JJ; Peccoud J
    Cell Cycle; 2013 Oct; 12(19):3203-18. PubMed ID: 24013422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Detection of mRNA and Protein in S. cerevisiae by Single-Molecule FISH and Immunofluorescence.
    Tutucci E; Singer RH
    Methods Mol Biol; 2020; 2166():51-69. PubMed ID: 32710403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of molecular noise and size control on variability in the budding yeast cell cycle.
    Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR
    Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virtual mutagenesis of the yeast cyclins genetic network reveals complex dynamics of transcriptional control networks.
    Vohradska E; Vohradsky J
    PLoS One; 2011 Apr; 6(4):e18827. PubMed ID: 21541341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic simulation for the inference of transcriptional control network of yeast cyclins genes.
    Vohradsky J
    Nucleic Acids Res; 2012 Aug; 40(15):7096-103. PubMed ID: 22589416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle.
    Ferrezuelo F; Colomina N; Futcher B; Aldea M
    Genome Biol; 2010; 11(6):R67. PubMed ID: 20573214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the roles of noise in the eukaryotic cell cycle.
    Kar S; Baumann WT; Paul MR; Tyson JJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6471-6. PubMed ID: 19246388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast.
    Sia RA; Herald HA; Lew DJ
    Mol Biol Cell; 1996 Nov; 7(11):1657-66. PubMed ID: 8930890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression.
    Prasad V; Venkatesh KV
    BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae.
    Shi L; Tu BP
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7318-23. PubMed ID: 23589851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.
    Barik D; Ball DA; Peccoud J; Tyson JJ
    PLoS Comput Biol; 2016 Dec; 12(12):e1005230. PubMed ID: 27935947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-RNA counting reveals alternative modes of gene expression in yeast.
    Zenklusen D; Larson DR; Singer RH
    Nat Struct Mol Biol; 2008 Dec; 15(12):1263-71. PubMed ID: 19011635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of yeast cell-cycle regulation based on multisite phosphorylation.
    Barik D; Baumann WT; Paul MR; Novak B; Tyson JJ
    Mol Syst Biol; 2010 Aug; 6():405. PubMed ID: 20739927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription of functionally related constitutive genes is not coordinated.
    Gandhi SJ; Zenklusen D; Lionnet T; Singer RH
    Nat Struct Mol Biol; 2011 Jan; 18(1):27-34. PubMed ID: 21131977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches.
    Teixeira MC; Dias PJ; Monteiro PT; Sala A; Oliveira AL; Freitas AT; Sá-Correia I
    Mol Biosyst; 2010 Dec; 6(12):2471-81. PubMed ID: 20938527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast.
    Trcek T; Larson DR; Moldón A; Query CC; Singer RH
    Cell; 2011 Dec; 147(7):1484-97. PubMed ID: 22196726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model of size control in the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Cao Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):322. PubMed ID: 31216979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CDK-APC/C Oscillator Predominantly Entrains Periodic Cell-Cycle Transcription.
    Rahi SJ; Pecani K; Ondracka A; Oikonomou C; Cross FR
    Cell; 2016 Apr; 165(2):475-87. PubMed ID: 27058667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G1/S Transcription Factor Copy Number Is a Growth-Dependent Determinant of Cell Cycle Commitment in Yeast.
    Dorsey S; Tollis S; Cheng J; Black L; Notley S; Tyers M; Royer CA
    Cell Syst; 2018 May; 6(5):539-554.e11. PubMed ID: 29792825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.