BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 24013440)

  • 1. Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons.
    Yang H; Tang Y; Gong J; Liu Y; Wang X; Zhao Y; Yang P; Wang S
    J Mol Model; 2013 Nov; 19(11):4781-8. PubMed ID: 24013440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons.
    Li Y; Zhou Z; Shen P; Chen Z
    ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal conductivity and heat transport properties of nitrogen-doped graphene.
    Goharshadi EK; Mahdizadeh SJ
    J Mol Graph Model; 2015 Nov; 62():74-80. PubMed ID: 26386455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size and edge roughness dependence of thermal conductivity for vacancy-defective graphene ribbons.
    Xie G; Shen Y
    Phys Chem Chem Phys; 2015 Apr; 17(14):8822-7. PubMed ID: 25743638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J; Ruan X; Chen YP
    Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the effects of dispersed Stone-Thrower-Wales defects and double vacancies on the thermal conductivity of graphene nanoribbons.
    Yeo JJ; Liu Z; Ng TY
    Nanotechnology; 2012 Sep; 23(38):385702. PubMed ID: 22947664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of phonon scattering by substitutional and structural defects on thermal conductivity of 2D graphene.
    Lee BS
    J Phys Condens Matter; 2018 Jul; 30(29):295302. PubMed ID: 29873305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility.
    Wei N; Xu L; Wang HQ; Zheng JC
    Nanotechnology; 2011 Mar; 22(10):105705. PubMed ID: 21289391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tensile strain on thermal conductivity in monolayer graphene nanoribbons: a molecular dynamics study.
    Zhang J; He X; Yang L; Wu G; Sha J; Hou C; Yin C; Pan A; Li Z; Liu Y
    Sensors (Basel); 2013 Jul; 13(7):9388-95. PubMed ID: 23881138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study.
    Zanane FZ; Sadki K; Drissi LB; Saidi EH
    J Mol Model; 2022 Mar; 28(4):88. PubMed ID: 35267102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study.
    Islam ASMJ; Islam MS; Ferdous N; Park J; Hashimoto A
    Phys Chem Chem Phys; 2020 Jun; 22(24):13592-13602. PubMed ID: 32515451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research Progress on Thermal Conductivity of Graphdiyne Nanoribbons and its Defects: A Review.
    Tian W; Cheng C; Wang C; Li W
    Recent Pat Nanotechnol; 2020; 14(4):294-306. PubMed ID: 32525786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong reduction of thermal conductivity of WSe
    Wang B; Yan X; Yan H; Cai Y
    Nanotechnology; 2022 Apr; 33(27):. PubMed ID: 35349994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal conductivity of graphene nanoribbons under shear deformation: A molecular dynamics simulation.
    Zhang C; Hao XL; Wang CX; Wei N; Rabczuk T
    Sci Rep; 2017 Jan; 7():41398. PubMed ID: 28120921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical characterization of thermal transport in hexagonal tungsten disulfide (WS
    Ghosh A; Ahmed SS; Shawkat MSA; Subrina S
    Nanotechnology; 2024 Jun; ():. PubMed ID: 38906122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections.
    Wang H; Cheng Y; Fan Z; Guo Y; Zhang Z; Bescond M; Nomura M; Ala-Nissila T; Volz S; Xiong S
    Nanoscale; 2021 Jun; 13(22):10010-10015. PubMed ID: 34037041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.
    Culchac FJ; Capaz RB
    Nanotechnology; 2016 Feb; 27(6):065707. PubMed ID: 26762781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons.
    Senturk AE; Oktem AS; Konukman AES
    J Mol Model; 2017 Aug; 23(8):247. PubMed ID: 28766111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of vacancy defects on the interfacial thermal resistance of partially overlapped bilayer graphene.
    Wang BC; Cao Q; Shao W; Cui Z
    Phys Chem Chem Phys; 2022 Mar; 24(9):5546-5554. PubMed ID: 35174847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning spin polarization and spin transport of zigzag graphene nanoribbons by line defects.
    Tang GP; Zhang ZH; Deng XQ; Fan ZQ; Zhu HL
    Phys Chem Chem Phys; 2015 Jan; 17(1):638-43. PubMed ID: 25407715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.