These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24013454)

  • 1. Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps.
    Scholder O; Jefimovs K; Shorubalko I; Hafner C; Sennhauser U; Bona GL
    Nanotechnology; 2013 Oct; 24(39):395301. PubMed ID: 24013454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.
    Kollmann H; Piao X; Esmann M; Becker SF; Hou D; Huynh C; Kautschor LO; Bösker G; Vieker H; Beyer A; Gölzhäuser A; Park N; Vogelgesang R; Silies M; Lienau C
    Nano Lett; 2014 Aug; 14(8):4778-84. PubMed ID: 25051422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography.
    Horák M; Bukvišová K; Švarc V; Jaskowiec J; Křápek V; Šikola T
    Sci Rep; 2018 Jun; 8(1):9640. PubMed ID: 29941880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helium ion beam milling to create a nano-structured domain wall magnetoresistance spin valve.
    Wang Y; Boden SA; Bagnall DM; Rutt HN; de Groot CH
    Nanotechnology; 2012 Oct; 23(39):395302. PubMed ID: 22972003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniaturized fractal optical nanoantennas defined by focused helium ion beam milling.
    Seitl L; Laible F; Dickreuter S; Gollmer DA; Kern DP; Fleischer M
    Nanotechnology; 2020 Feb; 31(7):075301. PubMed ID: 31725410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties.
    Wissert MD; Schell AW; Ilin KS; Siegel M; Eisler HJ
    Nanotechnology; 2009 Oct; 20(42):425203. PubMed ID: 19779233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling.
    Wang Y; Abb M; Boden SA; Aizpurua J; de Groot CH; Muskens OL
    Nano Lett; 2013; 13(11):5647-53. PubMed ID: 24127754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps.
    Duan H; Hu H; Kumar K; Shen Z; Yang JK
    ACS Nano; 2011 Sep; 5(9):7593-600. PubMed ID: 21846105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition.
    Acar H; Coenen T; Polman A; Kuipers LK
    ACS Nano; 2012 Sep; 6(9):8226-32. PubMed ID: 22889269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam.
    Han G; Weber D; Neubrech F; Yamada I; Mitome M; Bando Y; Pucci A; Nagao T
    Nanotechnology; 2011 Jul; 22(27):275202. PubMed ID: 21597137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-effective strategies for the fabrication of poly- and single-crystalline gold nano-structures by focused helium ion beam milling.
    Laible F; Dreser C; Kern DP; Fleischer M
    Nanotechnology; 2019 Jun; 30(23):235302. PubMed ID: 30907377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-cascade laser integrated with a metal-dielectric-metal-based plasmonic antenna.
    Dey D; Kohoutek J; Gelfand RM; Bonakdar A; Mohseni H
    Opt Lett; 2010 Aug; 35(16):2783-5. PubMed ID: 20717456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering reduction at near-infrared frequencies using plasmonic nanostructures.
    Tamma VA; Cui Y; Park W
    Opt Express; 2013 Jan; 21(1):1041-56. PubMed ID: 23388998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct and accurate patterning of plasmonic nanostructures with ultrasmall gaps.
    Si G; Zhao Y; Lv J; Wang F; Liu H; Teng J; Liu YJ
    Nanoscale; 2013 May; 5(10):4309-13. PubMed ID: 23552187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating.
    Liu J; Zhang S; Ma Y; Shao J; Lu B; Chen Y
    Appl Opt; 2015 Mar; 54(9):2537-42. PubMed ID: 25968546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and characterization of plasmonic nanocone antennas for strong spontaneous emission enhancement.
    Hoffmann B; Vassant S; Chen XW; Götzinger S; Sandoghdar V; Christiansen S
    Nanotechnology; 2015 Oct; 26(40):404001. PubMed ID: 26376922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas.
    Duan H; Hu H; Hui HK; Shen Z; Yang JK
    Nanotechnology; 2013 May; 24(18):185301. PubMed ID: 23579281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable nanoantennas using electron-beam manipulation.
    Roxworthy BJ; Bhuiya AM; Yu X; Chow EK; Toussaint KC
    Nat Commun; 2014 Jul; 5():4427. PubMed ID: 25020189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
    Chen Y; Bi K; Wang Q; Zheng M; Liu Q; Han Y; Yang J; Chang S; Zhang G; Duan H
    ACS Nano; 2016 Dec; 10(12):11228-11236. PubMed ID: 28024375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.