These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24013694)

  • 1. Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification.
    Ma W; Jiao Y; Meng S
    Phys Chem Chem Phys; 2013 Oct; 15(40):17187-94. PubMed ID: 24013694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic mechanism of charge separation upon photoexcitation at the dye-semiconductor interface for photovoltaic applications.
    Jiao Y; Ding Z; Meng S
    Phys Chem Chem Phys; 2011 Aug; 13(29):13196-201. PubMed ID: 21709923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface.
    Amat A; De Angelis F
    Phys Chem Chem Phys; 2012 Aug; 14(30):10662-8. PubMed ID: 22743544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes.
    Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S
    Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations.
    Liang J; Zhu C; Cao Z
    Phys Chem Chem Phys; 2013 Sep; 15(33):13844-51. PubMed ID: 23698651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond to millisecond studies of electron transfer processes in a donor-(π-spacer)-acceptor series of organic dyes for solar cells interacting with titania nanoparticles and ordered nanotube array films.
    Ziółek M; Cohen B; Yang X; Sun L; Paulose M; Varghese OK; Grimes CA; Douhal A
    Phys Chem Chem Phys; 2012 Feb; 14(8):2816-31. PubMed ID: 22258566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface modification of 8-hydroxyquinoline aluminium with combined effects in quasi-solid dye-sensitized solar cells.
    Gao R; Niu G; Wang L; Geng Y; Ma B; Zhu Y; Dong H; Qiu Y
    Phys Chem Chem Phys; 2012 May; 14(17):5973-8. PubMed ID: 22441558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells.
    Gao R; Wang L; Ma B; Zhan C; Qiu Y
    Langmuir; 2010 Feb; 26(4):2460-5. PubMed ID: 19856906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy.
    Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR
    J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells.
    Hao F; Jiao X; Li J; Lin H
    Nanoscale; 2013 Jan; 5(2):726-33. PubMed ID: 23223876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of the dye's molecular levels with the TiO(2) band edges in dye-sensitized solar cells: a DFT-TDDFT study.
    De Angelis F; Fantacci S; Selloni A
    Nanotechnology; 2008 Oct; 19(42):424002. PubMed ID: 21832662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photophysical studies of dipolar organic dyes that feature a 1,3-cyclohexadiene conjugated linkage: the implication of a twisted intramolecular charge-transfer state on the efficiency of dye-sensitized solar cells.
    Chen KF; Chang CW; Lin JL; Hsu YC; Yeh MC; Hsu CP; Sun SS
    Chemistry; 2010 Nov; 16(43):12873-82. PubMed ID: 20886474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Built-in quantum dot antennas in dye-sensitized solar cells.
    Buhbut S; Itzhakov S; Tauber E; Shalom M; Hod I; Geiger T; Garini Y; Oron D; Zaban A
    ACS Nano; 2010 Mar; 4(3):1293-8. PubMed ID: 20155968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple-state interfacial electron injection competes with excited state relaxation and de-excitation to determine external quantum efficiencies of organic dye-sensitized solar cells.
    Zhang M; Yang L; Yan C; Ma W; Wang P
    Phys Chem Chem Phys; 2014 Oct; 16(38):20578-85. PubMed ID: 25156537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Ga-V Codoping on Interfacial Electron Transfer in Dye-Sensitized TiO2.
    Syzgantseva OA; Puska M; Laasonen K
    J Phys Chem Lett; 2015 Jul; 6(13):2603-7. PubMed ID: 26266741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoselective excited state dynamics in ZnO-Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells.
    Sarkar S; Makhal A; Bora T; Baruah S; Dutta J; Pal SK
    Phys Chem Chem Phys; 2011 Jul; 13(27):12488-96. PubMed ID: 21660322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of the photoexcited electron at the chromophore-semiconductor interface.
    Prezhdo OV; Duncan WR; Prezhdo VV
    Acc Chem Res; 2008 Feb; 41(2):339-48. PubMed ID: 18281950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-domain ab initio study of charge relaxation and recombination in dye-sensitized TiO2.
    Duncan WR; Craig CF; Prezhdo OV
    J Am Chem Soc; 2007 Jul; 129(27):8528-43. PubMed ID: 17579405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.