These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 24013804)

  • 1. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure.
    Dabkowski ER; O'Connell KA; Xu W; Ribeiro RF; Hecker PA; Shekar KC; Daneault C; Des Rosiers C; Stanley WC
    Cardiovasc Drugs Ther; 2013 Dec; 27(6):499-510. PubMed ID: 24013804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival.
    Galvao TF; Khairallah RJ; Dabkowski ER; Brown BH; Hecker PA; O'Connell KA; O'Shea KM; Sabbah HN; Rastogi S; Daneault C; Des Rosiers C; Stanley WC
    Am J Physiol Heart Circ Physiol; 2013 Jan; 304(1):H12-21. PubMed ID: 23103493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment with docosahexaenoic acid, but not eicosapentaenoic acid, delays Ca2+-induced mitochondria permeability transition in normal and hypertrophied myocardium.
    Khairallah RJ; O'Shea KM; Brown BH; Khanna N; Des Rosiers C; Stanley WC
    J Pharmacol Exp Ther; 2010 Oct; 335(1):155-62. PubMed ID: 20624993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary omega-3 fatty acids alter cardiac mitochondrial phospholipid composition and delay Ca2+-induced permeability transition.
    O'Shea KM; Khairallah RJ; Sparagna GC; Xu W; Hecker PA; Robillard-Frayne I; Des Rosiers C; Kristian T; Murphy RC; Fiskum G; Stanley WC
    J Mol Cell Cardiol; 2009 Dec; 47(6):819-27. PubMed ID: 19703463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary supplementation with docosahexaenoic acid, but not eicosapentaenoic acid, dramatically alters cardiac mitochondrial phospholipid fatty acid composition and prevents permeability transition.
    Khairallah RJ; Sparagna GC; Khanna N; O'Shea KM; Hecker PA; Kristian T; Fiskum G; Des Rosiers C; Polster BM; Stanley WC
    Biochim Biophys Acta; 2010 Aug; 1797(8):1555-62. PubMed ID: 20471951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cardioprotective effects of fish oil during pressure overload are blocked by high fat intake: role of cardiac phospholipid remodeling.
    Shah KB; Duda MK; O'Shea KM; Sparagna GC; Chess DJ; Khairallah RJ; Robillard-Frayne I; Xu W; Murphy RC; Des Rosiers C; Stanley WC
    Hypertension; 2009 Sep; 54(3):605-11. PubMed ID: 19597033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved mitochondrial function with diet-induced increase in either docosahexaenoic acid or arachidonic acid in membrane phospholipids.
    Khairallah RJ; Kim J; O'Shea KM; O'Connell KA; Brown BH; Galvao T; Daneault C; Des Rosiers C; Polster BM; Hoppel CL; Stanley WC
    PLoS One; 2012; 7(3):e34402. PubMed ID: 22479624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary saturated fat and docosahexaenoic acid differentially effect cardiac mitochondrial phospholipid fatty acyl composition and Ca(2+) uptake, without altering permeability transition or left ventricular function.
    O'Connell KA; Dabkowski ER; de Fatima Galvao T; Xu W; Daneault C; de Rosiers C; Stanley WC
    Physiol Rep; 2013 Jun; 1(1):e00009. PubMed ID: 24303101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of docosahexaenoic acid in a dog model of hypertension induced left ventricular hypertrophy.
    Stanley WC; Cox JW; Asemu G; O'Connell KA; Dabkowski ER; Xu W; Ribeiro RF; Shekar KC; Hoag SW; Rastogi S; Sabbah HN; Daneault C; des Rosiers C
    J Cardiovasc Transl Res; 2013 Dec; 6(6):1000-10. PubMed ID: 24065618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload.
    Doenst T; Pytel G; Schrepper A; Amorim P; Färber G; Shingu Y; Mohr FW; Schwarzer M
    Cardiovasc Res; 2010 Jun; 86(3):461-70. PubMed ID: 20035032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial Integrity and Function in the Progression of Early Pressure Overload-Induced Left Ventricular Remodeling.
    Chaanine AH; Sreekumaran Nair K; Bergen RH; Klaus K; Guenzel AJ; Hajjar RJ; Redfield MM
    J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28619984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Docosahexaenoic acid affects insulin deficiency- and insulin resistance-induced alterations in cardiac mitochondria.
    Ovide-Bordeaux S; Grynberg A
    Am J Physiol Regul Integr Comp Physiol; 2004 Mar; 286(3):R519-27. PubMed ID: 14604840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish oil, but not flaxseed oil, decreases inflammation and prevents pressure overload-induced cardiac dysfunction.
    Duda MK; O'Shea KM; Tintinu A; Xu W; Khairallah RJ; Barrows BR; Chess DJ; Azimzadeh AM; Harris WS; Sharov VG; Sabbah HN; Stanley WC
    Cardiovasc Res; 2009 Feb; 81(2):319-27. PubMed ID: 19015135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal mitochondria.
    Schwarzer M; Schrepper A; Amorim PA; Osterholt M; Doenst T
    Am J Physiol Heart Circ Physiol; 2013 Feb; 304(4):H529-37. PubMed ID: 23241325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docosahexaenoic acid protects against palmitate-induced mitochondrial dysfunction in diabetic cardiomyopathy.
    Gui T; Li Y; Zhang S; Zhang N; Sun Y; Liu F; Chen Q; Gai Z
    Biomed Pharmacother; 2020 Aug; 128():110306. PubMed ID: 32526458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Update on lipids and mitochondrial function: impact of dietary n-3 polyunsaturated fatty acids.
    Stanley WC; Khairallah RJ; Dabkowski ER
    Curr Opin Clin Nutr Metab Care; 2012 Mar; 15(2):122-6. PubMed ID: 22248591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polyunsaturated fatty acids, EPA and DHA, ameliorate myocardial infarction-induced heart failure by inhibiting p300-HAT activity in rats.
    Sunagawa Y; Katayama A; Funamoto M; Shimizu K; Shimizu S; Sari N; Katanasaka Y; Miyazaki Y; Hosomi R; Hasegawa K; Morimoto T
    J Nutr Biochem; 2022 Aug; 106():109031. PubMed ID: 35504444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-fat diet increases adiposity but maintains mitochondrial oxidative enzymes without affecting development of heart failure with pressure overload.
    Chess DJ; Khairallah RJ; O'Shea KM; Xu W; Stanley WC
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1585-93. PubMed ID: 19767529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dietary docosahexaenoic acid on the endothelium-dependent vasorelaxation in diabetic rats.
    Goirand F; Ovide-Bordeaux S; Renaud JF; Grynberg A; Lacour B
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):184-90. PubMed ID: 15743401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload.
    Yancey DM; Guichard JL; Ahmed MI; Zhou L; Murphy MP; Johnson MS; Benavides GA; Collawn J; Darley-Usmar V; Dell'Italia LJ
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H651-63. PubMed ID: 25599572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.