These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24013826)

  • 1. Sleep and wakefulness state detection in nocturnal actigraphy based on movement information.
    Domingues A; Paiva T; Sanches JM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):426-34. PubMed ID: 24013826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated video-analysis software system designed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep.
    Scatena M; Dittoni S; Maviglia R; Frusciante R; Testani E; Vollono C; Losurdo A; Colicchio S; Gnoni V; Labriola C; Farina B; Pennisi MA; Della Marca G
    Clin Neurophysiol; 2012 Feb; 123(2):318-23. PubMed ID: 21873109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypnogram and sleep parameter computation from activity and cardiovascular data.
    Domingues A; Paiva T; Sanches JM
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1711-9. PubMed ID: 24845281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisite accelerometry for sleep and wake classification in children.
    Lamprecht ML; Bradley AP; Tran T; Boynton A; Terrill PI
    Physiol Meas; 2015 Jan; 36(1):133-47. PubMed ID: 25514194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of movement in bed using unobtrusive load cell sensors.
    Adami AM; Pavel M; Hayes TL; Singer CM
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):481-90. PubMed ID: 19171523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algorithms for using an activity-based accelerometer for identification of infant sleep-wake states during nap studies.
    Galland BC; Kennedy GJ; Mitchell EA; Taylor BJ
    Sleep Med; 2012 Jun; 13(6):743-51. PubMed ID: 22542788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic detection of wakefulness and rest intervals in actigraphic signals: a data-driven approach.
    Martín-Martínez D; Casaseca-de-la-Higuera P; Andrés-de-Llano JM; Garmendia-Leiza JR; Alberola-López S; Alberola-López C
    Med Eng Phys; 2014 Dec; 36(12):1585-92. PubMed ID: 25262447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An actigraphy heterogeneous mixture model for sleep assessment.
    Domingues A; Paiva T; Sanches JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2275-8. PubMed ID: 23366377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A balanced sleep/wakefulness classification method based on actigraphic data in adolescents.
    Orellana G; Held CM; Estevez PA; Perez CA; Reyes S; Algarin C; Peirano P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4188-91. PubMed ID: 25570915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep/wake detection based on cardiorespiratory signals and actigraphy.
    Devot S; Dratwa R; Naujokat E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5089-92. PubMed ID: 21096033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Actigraphy in sleep medicine and sleep research].
    Tamura Y; Matsuda M; Chiba S
    Nihon Rinsho; 2009 Aug; 67(8):1576-80. PubMed ID: 19768943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimum duration of actigraphy-defined nocturnal awakenings necessary for morning recall.
    Winser MA; McBean AL; Montgomery-Downs HE
    Sleep Med; 2013 Jul; 14(7):688-91. PubMed ID: 23746600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fetal heart rate baseline estimation with analysis of fetal movement signal.
    Lu Y; Li X; Wei S; Liu X
    Biomed Mater Eng; 2014; 24(6):3763-9. PubMed ID: 25227092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal Ambulatory Sleep Detection Using LSTM Recurrent Neural Networks.
    Sano A; Chen W; Lopez-Martinez D; Taylor S; Picard RW
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1607-1617. PubMed ID: 30176613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human biovibrations: assessment of human life signs, motor activity, and cognitive performance using wrist-mounted actigraphy.
    Russo MB; Vo A; Labutta R; Black I; Campbell W; Greene J; McGhee J; Redmond D
    Aviat Space Environ Med; 2005 Jul; 76(7 Suppl):C64-74. PubMed ID: 16018332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical application of a novel automatic algorithm for actigraphy-based activity and rest period identification to accurately determine awake and asleep ambulatory blood pressure parameters and cardiovascular risk.
    Crespo C; Fernández JR; Aboy M; Mojón A
    Chronobiol Int; 2013 Mar; 30(1-2):43-54. PubMed ID: 23130607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic sleep-wake and nap analysis with a new wrist worn online activity monitoring device vivago WristCare.
    Lötjönen J; Korhonen I; Hirvonen K; Eskelinen S; Myllymäki M; Partinen M
    Sleep; 2003 Feb; 26(1):86-90. PubMed ID: 12627738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity.
    Kosmadopoulos A; Darwent D; Roach GD
    Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambulatory monitoring of sleep disorders.
    Tahmasian M; Khazaie H; Sepehry AA; Russo MB
    J Pak Med Assoc; 2010 Jun; 60(6):480-7. PubMed ID: 20527649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.