These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 24013860)
1. Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment. Marques SS; Nascimento IA; de Almeida PF; Chinalia FA Appl Biochem Biotechnol; 2013 Dec; 171(8):1933-43. PubMed ID: 24013860 [TBL] [Abstract][Full Text] [Related]
2. The use of microalgae and their culture medium for biogas production in an integrated cycle. Formagini EL; Marques FR; Serejo ML; Paulo PL; Boncz MA Water Sci Technol; 2014; 69(5):941-6. PubMed ID: 24622540 [TBL] [Abstract][Full Text] [Related]
3. Chlorella vulgaris growth on anaerobically digested sugarcane vinasse: influence of turbidity. Serejo ML; Ruas G; Braga GB; Paulo PL; Boncz MÀ An Acad Bras Cienc; 2021; 93(1):e20190084. PubMed ID: 33909816 [TBL] [Abstract][Full Text] [Related]
4. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Carver SM; Hulatt CJ; Thomas DN; Tuovinen OH Biodegradation; 2011 Jul; 22(4):805-14. PubMed ID: 20878208 [TBL] [Abstract][Full Text] [Related]
5. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
6. Reducing the life cycle GHG emissions of microalgal biodiesel through integration with ethanol production system. Maranduba HL; Robra S; Nascimento IA; da Cruz RS; Rodrigues LB; de Almeida Neto JA Bioresour Technol; 2015 Oct; 194():21-7. PubMed ID: 26176822 [TBL] [Abstract][Full Text] [Related]
7. Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Yu H; Kim J; Lee C Sci Rep; 2019 Apr; 9(1):6123. PubMed ID: 30992470 [TBL] [Abstract][Full Text] [Related]
9. Application of urea dosing for alkalinity supply during anaerobic digestion of vinasse. Boncz MA; Formagini EL; Santos Lda S; Marques RD; Paulo PL Water Sci Technol; 2012; 66(11):2453-60. PubMed ID: 23032778 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Sialve B; Bernet N; Bernard O Biotechnol Adv; 2009; 27(4):409-16. PubMed ID: 19289163 [TBL] [Abstract][Full Text] [Related]
11. Chlorella vulgaris growth in different biodigested vinasse concentrations: biomass, pigments and final composition. Trevisan E; Godoy RFB; Radomski FAD; Crisigiovanni EL; Branco KBZF; Arroyo PA Water Sci Technol; 2020 Sep; 82(6):1111-1119. PubMed ID: 33055401 [TBL] [Abstract][Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
13. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Singh M; Reynolds DL; Das KC Bioresour Technol; 2011 Dec; 102(23):10841-8. PubMed ID: 21967714 [TBL] [Abstract][Full Text] [Related]
14. Effects of cultivation conditions on Chlorella vulgaris and Desmodesmus sp. grown in sugarcane agro-industry residues. Ferreira GF; Ríos Pinto LF; Maciel Filho R; Fregolente LV Bioresour Technol; 2021 Dec; 342():125949. PubMed ID: 34592614 [TBL] [Abstract][Full Text] [Related]
15. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832 [TBL] [Abstract][Full Text] [Related]
18. Pilot project at Hazira, India, for capture of carbon dioxide and its biofixation using microalgae. Yadav A; Choudhary P; Atri N; Teir S; Mutnuri S Environ Sci Pollut Res Int; 2016 Nov; 23(22):22284-22291. PubMed ID: 27032631 [TBL] [Abstract][Full Text] [Related]
19. Three-reaction model for the anaerobic digestion of microalgae. Mairet F; Bernard O; Cameron E; Ras M; Lardon L; Steyer JP; Chachuat B Biotechnol Bioeng; 2012 Feb; 109(2):415-25. PubMed ID: 22020983 [TBL] [Abstract][Full Text] [Related]
20. Current developments and challenges of green technologies for the valorization of liquid, solid, and gaseous wastes from sugarcane ethanol production. Sydney EB; Carvalho JC; Letti LAJ; Magalhães AI; Karp SG; Martinez-Burgos WJ; Candeo ES; Rodrigues C; Vandenberghe LPS; Neto CJD; Torres LAZ; Medeiros ABP; Woiciechowski AL; Soccol CR J Hazard Mater; 2021 Feb; 404(Pt A):124059. PubMed ID: 33027733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]