BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24013927)

  • 1. Multi-profile Bayesian alignment model for LC-MS data analysis with integration of internal standards.
    Tsai TH; Tadesse MG; Di Poto C; Pannell LK; Mechref Y; Wang Y; Ressom HW
    Bioinformatics; 2013 Nov; 29(21):2774-80. PubMed ID: 24013927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating peak grouping information for alignment of multiple liquid chromatography-mass spectrometry datasets.
    Wandy J; Daly R; Breitling R; Rogers S
    Bioinformatics; 2015 Jun; 31(12):1999-2006. PubMed ID: 25649621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention time alignment algorithms for LC/MS data must consider non-linear shifts.
    Podwojski K; Fritsch A; Chamrad DC; Paul W; Sitek B; Stühler K; Mutzel P; Stephan C; Meyer HE; Urfer W; Ickstadt K; Rahnenführer J
    Bioinformatics; 2009 Mar; 25(6):758-64. PubMed ID: 19176558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements.
    Lange E; Tautenhahn R; Neumann S; Gröpl C
    BMC Bioinformatics; 2008 Sep; 9():375. PubMed ID: 18793413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PeakLink: a new peptide peak linking method in LC-MS/MS using wavelet and SVM.
    Ghanat Bari M; Ma X; Zhang J
    Bioinformatics; 2014 Sep; 30(17):2464-70. PubMed ID: 24813213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach.
    Yu T; Jones DP
    Bioinformatics; 2014 Oct; 30(20):2941-8. PubMed ID: 25005748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-based feature matching improves protein identification via LC-MS and tandem MS.
    Noy K; Towfic F; Wittenberg GM; Fasulo D
    J Comput Biol; 2011 Apr; 18(4):547-57. PubMed ID: 21417940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS.
    Ranjbar MR; Tadesse MG; Wang Y; Ressom HW
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):914-27. PubMed ID: 26357332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time alignment algorithms based on selected mass traces for complex LC-MS data.
    Christin C; Hoefsloot HC; Smilde AK; Suits F; Bischoff R; Horvatovich PL
    J Proteome Res; 2010 Mar; 9(3):1483-95. PubMed ID: 20070124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LC-MS data analysis for differential protein expression detection.
    Varghese RS; Ressom HW
    Methods Mol Biol; 2011; 694():139-50. PubMed ID: 21082433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic mixture regression models for alignment of LC-MS data.
    Befekadu GK; Tadesse MG; Tsai TH; Ressom HW
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(5):1417-24. PubMed ID: 20837998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch alignment via retention orders for preprocessing large-scale multi-batch LC-MS experiments.
    Malinka F; Zareie A; Prochazka J; Sedlacek R; Novosadova V
    Bioinformatics; 2022 Aug; 38(15):3759-3767. PubMed ID: 35748696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepRTAlign: toward accurate retention time alignment for large cohort mass spectrometry data analysis.
    Liu Y; Yang Y; Chen W; Shen F; Xie L; Zhang Y; Zhai Y; He F; Zhu Y; Chang C
    Nat Commun; 2023 Dec; 14(1):8188. PubMed ID: 38081814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Simple Method for Peak Alignment Using Relative Retention Time Related to an Inherent Peak in Liquid Chromatography-Mass Spectrometry-Based Metabolomics.
    Wang Y; Ma L; Zhang M; Chen M; Li P; He C; Yan C; Wan JB
    J Chromatogr Sci; 2019 Jan; 57(1):9-16. PubMed ID: 30084945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized time alignment algorithm for LC-MS data: correlation optimized warping using component detection algorithm-selected mass chromatograms.
    Christin C; Smilde AK; Hoefsloot HC; Suits F; Bischoff R; Horvatovich PL
    Anal Chem; 2008 Sep; 80(18):7012-21. PubMed ID: 18715018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian based functional mixed-effects model for analysis of LC-MS data.
    Befekadu GK; Tadesse MG; Ressom HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6743-6. PubMed ID: 19963938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profile-Based LC-MS data alignment--a Bayesian approach.
    Tsai TH; Tadesse MG; Wang Y; Ressom HW
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(2):494-503. PubMed ID: 23929872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MassUntangler: a novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data.
    Ballardini R; Benevento M; Arrigoni G; Pattini L; Roda A
    J Chromatogr A; 2011 Dec; 1218(49):8859-68. PubMed ID: 21783198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-throughput processing service for retention time alignment of complex proteomics and metabolomics LC-MS data.
    Ahmad I; Suits F; Hoekman B; Swertz MA; Byelas H; Dijkstra M; Hooft R; Katsubo D; van Breukelen B; Bischoff R; Horvatovich P
    Bioinformatics; 2011 Apr; 27(8):1176-8. PubMed ID: 21349866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing qualitative LC-MS methods for characterization of Vaccinium berry Standard Reference Materials.
    Lowenthal MS; Phillips MM; Rimmer CA; Rudnick PA; Simón-Manso Y; Stein SE; Tchekhovskoi D; Phinney KW
    Anal Bioanal Chem; 2013 May; 405(13):4451-65. PubMed ID: 22941178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.