These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 24013927)

  • 41. Targeted realignment of LC-MS profiles by neighbor-wise compound-specific graphical time warping with misalignment detection.
    Wu CT; Wang Y; Wang Y; Ebbels T; Karaman I; Graça G; Pinto R; Herrington DM; Wang Y; Yu G
    Bioinformatics; 2020 May; 36(9):2862-2871. PubMed ID: 31950989
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MZDASoft: a software architecture that enables large-scale comparison of protein expression levels over multiple samples based on liquid chromatography/tandem mass spectrometry.
    Ghanat Bari M; Ramirez N; Wang Z; Zhang JM
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1841-8. PubMed ID: 26331936
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MET-XAlign: a metabolite cross-alignment tool for LC/MS-based comparative metabolomics.
    Zhang W; Lei Z; Huhman D; Sumner LW; Zhao PX
    Anal Chem; 2015 Sep; 87(18):9114-9. PubMed ID: 26247233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline.
    Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD
    Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets.
    Crowell KL; Slysz GW; Baker ES; LaMarche BL; Monroe ME; Ibrahim YM; Payne SH; Anderson GA; Smith RD
    Bioinformatics; 2013 Nov; 29(21):2804-5. PubMed ID: 24008421
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topic model-based mass spectrometric data analysis in cancer biomarker discovery studies.
    Wang M; Tsai TH; Di Poto C; Ferrarini A; Yu G; Ressom HW
    BMC Genomics; 2016 Aug; 17 Suppl 4(Suppl 4):545. PubMed ID: 27535232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Retention time shift analysis and correction in chemical isotope labeling liquid chromatography/mass spectrometry for metabolome analysis.
    Li Y; Li L
    Rapid Commun Mass Spectrom; 2020 Apr; 34 Suppl 1():e8643. PubMed ID: 31705568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design and analysis of quantitative differential proteomics investigations using LC-MS technology.
    Bukhman YV; Dharsee M; Ewing R; Chu P; Topaloglou T; Le Bihan T; Goh T; Duewel H; Stewart II; Wisniewski JR; Ng NF
    J Bioinform Comput Biol; 2008 Feb; 6(1):107-23. PubMed ID: 18324749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Counting missing values in a metabolite-intensity data set for measuring the analytical performance of a metabolomics platform.
    Huan T; Li L
    Anal Chem; 2015 Jan; 87(2):1306-13. PubMed ID: 25496403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preprocessing and Analysis of LC-MS-Based Proteomic Data.
    Tsai TH; Wang M; Ressom HW
    Methods Mol Biol; 2016; 1362():63-76. PubMed ID: 26519169
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A geometric approach for the alignment of liquid chromatography-mass spectrometry data.
    Lange E; Gröpl C; Schulz-Trieglaff O; Leinenbach A; Huber C; Reinert K
    Bioinformatics; 2007 Jul; 23(13):i273-81. PubMed ID: 17646306
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-class alignment of LC-MS data using probabilistic-based mixture regression models.
    Befekadu GK; Tadesse MG; Hathout Y; Ressom HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4094-7. PubMed ID: 19163612
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clustering with position-specific constraints on variance: applying redescending M-estimators to label-free LC-MS data analysis.
    Frühwirth R; Mani DR; Pyne S
    BMC Bioinformatics; 2011 Aug; 12():358. PubMed ID: 21884583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments.
    Ejigu BA; Valkenborg D; Baggerman G; Vanaerschot M; Witters E; Dujardin JC; Burzykowski T; Berg M
    OMICS; 2013 Sep; 17(9):473-85. PubMed ID: 23808607
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved quality control processing of peptide-centric LC-MS proteomics data.
    Matzke MM; Waters KM; Metz TO; Jacobs JM; Sims AC; Baric RS; Pounds JG; Webb-Robertson BJ
    Bioinformatics; 2011 Oct; 27(20):2866-72. PubMed ID: 21852304
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automated annotation and quantification of glycans using liquid chromatography-mass spectrometry.
    Yu CY; Mayampurath A; Hu Y; Zhou S; Mechref Y; Tang H
    Bioinformatics; 2013 Jul; 29(13):1706-7. PubMed ID: 23610369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mixed-effects statistical model for comparative LC-MS proteomics studies.
    Daly DS; Anderson KK; Panisko EA; Purvine SO; Fang R; Monroe ME; Baker SE
    J Proteome Res; 2008 Mar; 7(3):1209-17. PubMed ID: 18251496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing.
    Liu Q; Walker D; Uppal K; Liu Z; Ma C; Tran V; Li S; Jones DP; Yu T
    Sci Rep; 2020 Aug; 10(1):13856. PubMed ID: 32807888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving mass and liquid chromatography based identification of proteins using bayesian scoring.
    Chen SS; Deutsch EW; Yi EC; Li XJ; Goodlett DR; Aebersold R
    J Proteome Res; 2005; 4(6):2174-84. PubMed ID: 16335964
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.