BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24014093)

  • 1. C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells.
    Glogowska A; Kunanuvat U; Stetefeld J; Patel TR; Thanasupawat T; Krcek J; Weber E; Wong GW; Del Bigio MR; Hoang-Vu C; Hombach-Klonisch S; Klonisch T
    J Pathol; 2013 Dec; 231(4):466-79. PubMed ID: 24014093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells.
    Glogowska A; Thanasupawat T; Beiko J; Pitz M; Hombach-Klonisch S; Klonisch T
    Mol Oncol; 2022 Jan; 16(2):368-387. PubMed ID: 33960104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C1q/TNF-related peptide 8 (CTRP8) promotes temozolomide resistance in human glioblastoma.
    Thanasupawat T; Glogowska A; Burg M; Krcek J; Beiko J; Pitz M; Zhang GJ; Hombach-Klonisch S; Klonisch T
    Mol Oncol; 2018 Sep; 12(9):1464-1479. PubMed ID: 29949238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural commonality of C1q TNF-related proteins and their potential to activate relaxin/insulin-like family peptide receptor 1 signalling pathways in cancer cells.
    Klonisch T; Glogowska A; Thanasupawat T; Burg M; Krcek J; Pitz M; Jaggupilli A; Chelikani P; Wong GW; Hombach-Klonisch S
    Br J Pharmacol; 2017 May; 174(10):1025-1033. PubMed ID: 27443788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C1q/TNF-Related Proteins 1, 6 and 8 Are Involved in Corneal Epithelial Wound Closure by Targeting Relaxin Receptor RXFP1 In Vitro.
    Nicolaus HF; Klonisch T; Paulsen F; Garreis F
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment.
    Krishnan SN; Thanasupawat T; Arreza L; Wong GW; Sfanos K; Trock B; Arock M; Shah GG; Glogowska A; Ghavami S; Hombach-Klonisch S; Klonisch T
    Biochim Biophys Acta Mol Basis Dis; 2023 Jun; 1869(5):166681. PubMed ID: 36921737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms.
    Halls ML; Bathgate RA; Summers RJ
    Mol Pharmacol; 2006 Jul; 70(1):214-26. PubMed ID: 16569707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RXFP1 is Targeted by Complement C1q Tumor Necrosis Factor-Related Factor 8 in Brain Cancer.
    Thanasupawat T; Glogowska A; Burg M; Wong GW; Hoang-Vu C; Hombach-Klonisch S; Klonisch T
    Front Endocrinol (Lausanne); 2015; 6():127. PubMed ID: 26322020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxin family peptide receptor (RXFP1) coupling to G(alpha)i3 involves the C-terminal Arg752 and localization within membrane Raft Microdomains.
    Halls ML; van der Westhuizen ET; Wade JD; Evans BA; Bathgate RA; Summers RJ
    Mol Pharmacol; 2009 Feb; 75(2):415-28. PubMed ID: 19029286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging roles for the relaxin/RXFP1 system in cancer therapy.
    Thanasupawat T; Glogowska A; Nivedita-Krishnan S; Wilson B; Klonisch T; Hombach-Klonisch S
    Mol Cell Endocrinol; 2019 May; 487():85-93. PubMed ID: 30763603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxin family peptide receptors--former orphans reunite with their parent ligands to activate multiple signalling pathways.
    Halls ML; van der Westhuizen ET; Bathgate RA; Summers RJ
    Br J Pharmacol; 2007 Mar; 150(6):677-91. PubMed ID: 17293890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The different ligand-binding modes of relaxin family peptide receptors RXFP1 and RXFP2.
    Scott DJ; Rosengren KJ; Bathgate RA
    Mol Endocrinol; 2012 Nov; 26(11):1896-906. PubMed ID: 22973049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rh-relaxin-2 attenuates degranulation of mast cells by inhibiting NF-κB through PI3K-AKT/TNFAIP3 pathway in an experimental germinal matrix hemorrhage rat model.
    Li P; Zhao G; Chen F; Ding Y; Wang T; Liu S; Lu W; Xu W; Flores J; Ocak U; Zhang T; Zhang JH; Tang J
    J Neuroinflammation; 2020 Aug; 17(1):250. PubMed ID: 32859236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative localization of leucine-rich repeat-containing G-protein-coupled receptor-7 (RXFP1) mRNA and [33P]-relaxin binding sites in rat brain: restricted somatic co-expression a clue to relaxin action?
    Ma S; Shen PJ; Burazin TC; Tregear GW; Gundlach AL
    Neuroscience; 2006 Aug; 141(1):329-44. PubMed ID: 16725278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of the novel bioluminescent ligand-receptor binding assay to relaxin-RXFP1 system for interaction studies.
    Wu QP; Zhang L; Shao XX; Wang JH; Gao Y; Xu ZG; Liu YL; Guo ZY
    Amino Acids; 2016 Apr; 48(4):1099-1107. PubMed ID: 26767372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of signaling pathways activated by the relaxin family peptide receptors, RXFP1 and RXFP2, using reporter genes.
    Halls ML; Bathgate RA; Summers RJ
    J Pharmacol Exp Ther; 2007 Jan; 320(1):281-90. PubMed ID: 17065365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relaxin receptor (RXFP1) utilizes hydrophobic moieties on a signaling surface of its N-terminal low density lipoprotein class A module to mediate receptor activation.
    Kong RC; Petrie EJ; Mohanty B; Ling J; Lee JC; Gooley PR; Bathgate RA
    J Biol Chem; 2013 Sep; 288(39):28138-51. PubMed ID: 23926099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxin signaling activates peroxisome proliferator-activated receptor gamma.
    Singh S; Bennett RG
    Mol Cell Endocrinol; 2010 Feb; 315(1-2):239-45. PubMed ID: 19712722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Insights into the Activation of Human Relaxin Family Peptide Receptor 1 by Small-Molecule Agonists.
    Hu X; Myhr C; Huang Z; Xiao J; Barnaeva E; Ho BA; Agoulnik IU; Ferrer M; Marugan JJ; Southall N; Agoulnik AI
    Biochemistry; 2016 Mar; 55(12):1772-83. PubMed ID: 26866459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of beta-arrestin recruitment.
    Callander GE; Thomas WG; Bathgate RA
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1058-66. PubMed ID: 19279230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.