BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24014408)

  • 21. Identification of deacetylase substrates with the biotin switch approach.
    Thompson JW; Robeson A; Andersen JL
    Methods Mol Biol; 2013; 1077():133-48. PubMed ID: 24014404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of lysine-acetylated mitochondrial proteins and their acetylation sites.
    Hartl M; König AC; Finkemeier I
    Methods Mol Biol; 2015; 1305():107-21. PubMed ID: 25910729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the differentially expressed low molecular weight peptides in human serum via an N-terminal isotope labeling technique combining nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.
    Leng J; Zhu D; Wu D; Zhu T; Zhao N; Guo Y
    Rapid Commun Mass Spectrom; 2012 Nov; 26(21):2555-62. PubMed ID: 23008073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lysine acetylation targets protein complexes and co-regulates major cellular functions.
    Choudhary C; Kumar C; Gnad F; Nielsen ML; Rehman M; Walther TC; Olsen JV; Mann M
    Science; 2009 Aug; 325(5942):834-40. PubMed ID: 19608861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combined Metabolic and Chemical (CoMetChem) Labeling Using Stable Isotopes-a Strategy to Reveal Site-Specific Histone Acetylation and Deacetylation Rates by LC-MS.
    van Pijkeren A; Dietze J; Brotons AS; Egger AS; Lijster T; Barcaru A; Hotze M; Kobler P; Dekker FJ; Horvatovich P; Melgert BN; Ziegler M; Thedieck K; Heiland I; Bischoff R; Kwiatkowski M
    Anal Chem; 2021 Sep; 93(38):12872-12880. PubMed ID: 34519498
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Post-translational modifications of Desulfovibrio vulgaris Hildenborough sulfate reduction pathway proteins.
    Gaucher SP; Redding AM; Mukhopadhyay A; Keasling JD; Singh AK
    J Proteome Res; 2008 Jun; 7(6):2320-31. PubMed ID: 18416566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isotopic Labeling and Quantitative Proteomics of Acetylation on Histones and Beyond.
    Lund PJ; Kori Y; Zhao X; Sidoli S; Yuan ZF; Garcia BA
    Methods Mol Biol; 2019; 1977():43-70. PubMed ID: 30980322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein posttranslational modifications: phosphorylation site analysis using mass spectrometry.
    Annan RS; Zappacosta F
    Methods Biochem Anal; 2005; 45():85-106. PubMed ID: 19235292
    [No Abstract]   [Full Text] [Related]  

  • 29. Treating Colon Cancer Cells with FK228 Reveals a Link between Histone Lysine Acetylation and Extensive Changes in the Cellular Proteome.
    Wang TY; Jia YL; Zhang X; Sun QL; Li YC; Zhang JH; Zhao CP; Wang XY; Wang L
    Sci Rep; 2015 Dec; 5():18443. PubMed ID: 26675280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale.
    Chen Y; Li Y
    Methods Enzymol; 2019; 626():115-132. PubMed ID: 31606072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-specific reactivity of nonenzymatic lysine acetylation.
    Baeza J; Smallegan MJ; Denu JM
    ACS Chem Biol; 2015 Jan; 10(1):122-8. PubMed ID: 25555129
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating Histone Acetylation Stoichiometry and Turnover Rate.
    Fan J; Baeza J; Denu JM
    Methods Enzymol; 2016; 574():125-148. PubMed ID: 27423860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct monitoring of albumin lysine-525 N-homocysteinylation in human serum by liquid chromatography/mass spectrometry.
    Sikora M; Marczak L; Twardowski T; Stobiecki M; Jakubowski H
    Anal Biochem; 2010 Oct; 405(1):132-4. PubMed ID: 20659604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-gel stable isotope labeling for relative quantification using mass spectrometry.
    Asara JM; Zhang X; Zheng B; Maroney LA; Christofk HR; Wu N; Cantley LC
    Nat Protoc; 2006; 1(1):46-51. PubMed ID: 17406210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondria Lysine Acetylation and Phenotypic Control.
    Ciregia F
    Adv Exp Med Biol; 2019; 1158():59-70. PubMed ID: 31452135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of methylation, acetylation, and other modifications in bacterial ribosomal proteins.
    Arnold RJ; Running W; Reilly JP
    Methods Mol Biol; 2008; 446():151-61. PubMed ID: 18373256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative research of histone H3 acetylation levels of human hepatocellular carcinoma cells.
    Wang W; Xu L; Kong J; Fan H; Yang P
    Bioanalysis; 2013 Feb; 5(3):327-39. PubMed ID: 23394699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deacetylation of nonhistone proteins by HDACs and the implications in cancer.
    Peng L; Seto E
    Handb Exp Pharmacol; 2011; 206():39-56. PubMed ID: 21879445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysine acetylation regulates the activity of Escherichia coli S-adenosylmethionine synthase.
    Sun M; Guo H; Lu G; Gu J; Wang X; Zhang XE; Deng J
    Acta Biochim Biophys Sin (Shanghai); 2016 Aug; 48(8):723-31. PubMed ID: 27421658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aromatase Acetylation Patterns and Altered Activity in Response to Sirtuin Inhibition.
    Molehin D; Castro-Piedras I; Sharma M; Sennoune SR; Arena D; Manna PR; Pruitt K
    Mol Cancer Res; 2018 Oct; 16(10):1530-1542. PubMed ID: 29921733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.