BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24014428)

  • 1. The catalytic mechanism of protein phosphatase 5 established by DFT calculations.
    Ribeiro AJ; Alberto ME; Ramos MJ; Fernandes PA; Russo N
    Chemistry; 2013 Oct; 19(42):14081-9. PubMed ID: 24014428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the role of active site Mn
    Wang L; Yan F
    Biochem Biophys Res Commun; 2019 Apr; 511(3):612-618. PubMed ID: 30826056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deprotonation states of the two active site water molecules regulate the binding of protein phosphatase 5 with its substrate: A molecular dynamics study.
    Wang L; Yan F
    Protein Sci; 2017 Oct; 26(10):2010-2020. PubMed ID: 28726316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the antiferromagnetic MnIIMnII system within the protein phosphatase-5 catalytic site.
    Salter EA; Honkanen RE; Wierzbicki A
    J Mol Model; 2015 Jan; 21(1):14. PubMed ID: 25617208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the catalytic activity of human serine/threonine protein phosphatase-5.
    Swingle MR; Honkanen RE; Ciszak EM
    J Biol Chem; 2004 Aug; 279(32):33992-9. PubMed ID: 15155720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of cantharidin-like inhibitors with human protein phosphatase-5 in a Mg
    Assis LC; de Castro AA; Prandi IG; Mancini DT; de Giacoppo JOS; Savedra RML; de Assis TM; Carregal JB; da Cunha EFF; Ramalho TC
    J Mol Model; 2018 Oct; 24(10):303. PubMed ID: 30280322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies on the reaction mechanism of PP1 and the effects of different oxidation states of the Mn-Mn center on the mechanism.
    Zhang H; Ma Y; Liu K; Yu JG
    J Biol Inorg Chem; 2013 Apr; 18(4):451-9. PubMed ID: 23463033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular modeling of the catalytic domain of serine/threonine phosphatase-1 with the Zn2+ and Mn2+ di-nuclear ion centers in the active site.
    Wozniak E; Ołdziej S; Ciarkowski J
    Comput Chem; 2000 May; 24(3-4):381-90. PubMed ID: 10816008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can human prolidase enzyme use different metals for full catalytic activity?
    Alberto ME; Leopoldini M; Russo N
    Inorg Chem; 2011 Apr; 50(8):3394-403. PubMed ID: 21425789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the reaction mechanisms of iron- and manganese-containing 2,3-HPCD: an important spin transition for manganese.
    Georgiev V; Borowski T; Blomberg MR; Siegbahn PE
    J Biol Inorg Chem; 2008 Aug; 13(6):929-40. PubMed ID: 18458966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.
    Sproviero EM; Gascón JA; McEvoy JP; Brudvig GW; Batista VS
    J Am Chem Soc; 2008 Mar; 130(11):3428-42. PubMed ID: 18290643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The catalytic role of the M2 metal ion in PP2Cα.
    Pan C; Tang JY; Xu YF; Xiao P; Liu HD; Wang HA; Wang WB; Meng FG; Yu X; Sun JP
    Sci Rep; 2015 Feb; 5():8560. PubMed ID: 25708299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of regioselectivity and chemoselectivity in fosfomycin resistance protein FosA from QM/MM calculations.
    Liao RZ; Thiel W
    J Phys Chem B; 2013 Feb; 117(5):1326-36. PubMed ID: 23320732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression and purification of human calcineurin alpha from Escherichia coli and assessment of catalytic functions of residues surrounding the binuclear metal center.
    Mondragon A; Griffith EC; Sun L; Xiong F; Armstrong C; Liu JO
    Biochemistry; 1997 Apr; 36(16):4934-42. PubMed ID: 9125515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical study on the catalytic mechanism of the retaining α-1,2-mannosyltransferase Kre2p/Mnt1p: the impact of different metal ions on catalysis.
    Bobovská A; Tvaroška I; Kóňa J
    Org Biomol Chem; 2014 Jun; 12(24):4201-10. PubMed ID: 24831692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What occurs by replacing Mn2+ with Co2+ in human arginase I: first-principles computational analysis.
    Marino T; Russo N; Toscano M
    Inorg Chem; 2013 Jan; 52(2):655-9. PubMed ID: 23273171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-assisted catalytic mechanism of O-GlcNAc transferase discovered by quantum mechanics/molecular mechanics investigation.
    Tvaroška I; Kozmon S; Wimmerová M; Koča J
    J Am Chem Soc; 2012 Sep; 134(37):15563-71. PubMed ID: 22928765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of a weakly antiferromagnetically coupled Mn(II)Mn(III) model relevant to manganese proteins: a combined EPR, 55Mn-ENDOR, and DFT study.
    Cox N; Ames W; Epel B; Kulik LV; Rapatskiy L; Neese F; Messinger J; Wieghardt K; Lubitz W
    Inorg Chem; 2011 Sep; 50(17):8238-51. PubMed ID: 21834536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.