These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24015480)

  • 1. Bone tissue formation under ideal conditions in a scaffold generated by a reaction-diffusion system.
    Velasco AM; Garzón-Alvarado DA
    Mol Cell Biomech; 2013 Jun; 10(2):137-57. PubMed ID: 24015480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis.
    Garzón-Alvarado DA; Velasco MA; Narváez-Tovar CA
    Comput Biol Med; 2012 Feb; 42(2):147-55. PubMed ID: 22136697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration.
    Adachi T; Osako Y; Tanaka M; Hojo M; Hollister SJ
    Biomaterials; 2006 Jul; 27(21):3964-72. PubMed ID: 16584771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation.
    Jones JR; Lin S; Yue S; Lee PD; Hanna JV; Smith ME; Newport RJ
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1373-87. PubMed ID: 21287826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaffold microarchitecture determines internal bone directional growth structure: a numerical study.
    Sanz-Herrera JA; Doblaré M; García-Aznar JM
    J Biomech; 2010 Sep; 43(13):2480-6. PubMed ID: 20542275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of biocomposite materials for bone tissue regeneration.
    Yunus Basha R; Sampath Kumar TS; Doble M
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():452-63. PubMed ID: 26354284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacture of degradable polymeric scaffolds for bone regeneration.
    Ge Z; Jin Z; Cao T
    Biomed Mater; 2008 Jun; 3(2):022001. PubMed ID: 18523339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel collagen scaffold supports human osteogenesis--applications for bone tissue engineering.
    Keogh MB; O' Brien FJ; Daly JS
    Cell Tissue Res; 2010 Apr; 340(1):169-77. PubMed ID: 20198386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement.
    Cai S; Xi J; Chua CK
    Methods Mol Biol; 2012; 868():45-55. PubMed ID: 22692603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and manufacture of combinatorial calcium phosphate bone scaffolds.
    Hoelzle DJ; Svientek SR; Alleyne AG; Wagoner Johnson AJ
    J Biomech Eng; 2011 Oct; 133(10):101001. PubMed ID: 22070326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone regeneration on computer-designed nano-fibrous scaffolds.
    Chen VJ; Smith LA; Ma PX
    Biomaterials; 2006 Jul; 27(21):3973-9. PubMed ID: 16564086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun nanofibrous 3D scaffold for bone tissue engineering.
    Eap S; Ferrand A; Palomares CM; Hébraud A; Stoltz JF; Mainard D; Schlatter G; Benkirane-Jessel N
    Biomed Mater Eng; 2012; 22(1-3):137-41. PubMed ID: 22766712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured scaffolds for bone tissue engineering.
    Li X; Wang L; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2013 Aug; 101(8):2424-35. PubMed ID: 23377988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.