These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24015583)

  • 1. Operando atomic structure and active sites of TiO2(110)-supported gold nanoparticles during carbon monoxide oxidation.
    Saint-Lager MC; Laoufi I; Bailly A
    Faraday Discuss; 2013; 162():179-90. PubMed ID: 24015583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic properties of supported gold nanoparticles: new insights into the size-activity relationship gained from in operando measurements.
    Saint-Lager MC; Laoufi I; Bailly A; Robach O; Garaudée S; Dolle P
    Faraday Discuss; 2011; 152():253-65; discussion 293-306. PubMed ID: 22455049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO oxidation over supported gold nanoparticles as revealed by operando grazing incidence X-ray scattering analysis.
    Odarchenko Y; Martin DJ; Arnold T; Beale AM
    Faraday Discuss; 2018 Sep; 208(0):243-254. PubMed ID: 29809220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the catalytic activity of face-centered-cubic ruthenium nanoparticles determined from an atomic-scale structure.
    Kumara LS; Sakata O; Kohara S; Yang A; Song C; Kusada K; Kobayashi H; Kitagawa H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30622-30629. PubMed ID: 27787531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions.
    Hejral U; Franz D; Volkov S; Francoual S; Strempfer J; Stierle A
    Phys Rev Lett; 2018 Mar; 120(12):126101. PubMed ID: 29694082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ manipulation of the active Au-TiO
    Yuan W; Zhu B; Fang K; Li XY; Hansen TW; Ou Y; Yang H; Wagner JB; Gao Y; Wang Y; Zhang Z
    Science; 2021 Jan; 371(6528):517-521. PubMed ID: 33510028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distinct atomic structure-catalytic activity relationship in 3-10 nm supported Au particles.
    Petkov V; Ren Y; Shan S; Luo J; Zhong CJ
    Nanoscale; 2014 Jan; 6(1):532-8. PubMed ID: 24232747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
    Akita T; Kohyama M; Haruta M
    Acc Chem Res; 2013 Aug; 46(8):1773-82. PubMed ID: 23777292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomically precise gold nanoclusters as new model catalysts.
    Li G; Jin R
    Acc Chem Res; 2013 Aug; 46(8):1749-58. PubMed ID: 23534692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation.
    Delannoy L; Thrimurthulu G; Reddy PS; Méthivier C; Nelayah J; Reddy BM; Ricolleau C; Louis C
    Phys Chem Chem Phys; 2014 Dec; 16(48):26514-27. PubMed ID: 25051298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation.
    Kang Y; Ye X; Chen J; Qi L; Diaz RE; Doan-Nguyen V; Xing G; Kagan CR; Li J; Gorte RJ; Stach EA; Murray CB
    J Am Chem Soc; 2013 Jan; 135(4):1499-505. PubMed ID: 23294105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
    Baker TA; Liu X; Friend CM
    Phys Chem Chem Phys; 2011 Jan; 13(1):34-46. PubMed ID: 21103516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold atoms stabilized on various supports catalyze the water-gas shift reaction.
    Flytzani-Stephanopoulos M
    Acc Chem Res; 2014 Mar; 47(3):783-92. PubMed ID: 24266870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible restructuring of supported Au nanoparticles during butadiene hydrogenation revealed by operando GISAXS/GIWAXS.
    James Martin D; Decarolis D; Odarchenko YI; Herbert JJ; Arnold T; Rawle J; Nicklin C; Boyen HG; Beale AM
    Chem Commun (Camb); 2017 May; 53(37):5159-5162. PubMed ID: 28439593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective oxidation of n-butanol using gold-palladium supported nanoparticles under base-free conditions.
    Gandarias I; Miedziak PJ; Nowicka E; Douthwaite M; Morgan DJ; Hutchings GJ; Taylor SH
    ChemSusChem; 2015 Feb; 8(3):473-80. PubMed ID: 25522346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.