BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24015587)

  • 1. Mechanistic insights into the partial oxidation of acetic acid by O2 at the dual perimeter sites of a Au/TiO2 catalyst.
    Green IX; Tang W; Neurock M; Yates JT
    Faraday Discuss; 2013; 162():247-65. PubMed ID: 24015587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized partial oxidation of acetic acid at the dual perimeter sites of the Au/TiO2 catalyst-formation of gold ketenylidene.
    Green IX; Tang W; Neurock M; Yates JT
    J Am Chem Soc; 2012 Aug; 134(33):13569-72. PubMed ID: 22871091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO₂ catalyst.
    Green IX; Tang W; Neurock M; Yates JT
    Science; 2011 Aug; 333(6043):736-9. PubMed ID: 21817048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The critical role of water at the gold-titania interface in catalytic CO oxidation.
    Saavedra J; Doan HA; Pursell CJ; Grabow LC; Chandler BD
    Science; 2014 Sep; 345(6204):1599-602. PubMed ID: 25190716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition at perimeter sites of Au/TiO2 oxidation catalyst by reactant oxygen.
    Green IX; Tang W; McEntee M; Neurock M; Yates JT
    J Am Chem Soc; 2012 Aug; 134(30):12717-23. PubMed ID: 22738199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: a DFT+U study.
    Saqlain MA; Hussain A; Siddiq M; Ferreira AR; Leitão AA
    Phys Chem Chem Phys; 2015 Oct; 17(38):25403-10. PubMed ID: 26358616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rationale for the higher reactivity of interfacial sites in methanol decomposition on Au13/TiO2(110).
    Hong S; Rahman TS
    J Am Chem Soc; 2013 May; 135(20):7629-35. PubMed ID: 23617758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective catalytic oxidative-dehydrogenation of carboxylic acids-acrylate and crotonate formation at the Au/TiO2 interface.
    McEntee M; Tang W; Neurock M; Yates JT
    J Am Chem Soc; 2014 Apr; 136(13):5116-20. PubMed ID: 24597473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO Oxidation on Au/TiO2: Condition-Dependent Active Sites and Mechanistic Pathways.
    Wang YG; Cantu DC; Lee MS; Li J; Glezakou VA; Rousseau R
    J Am Chem Soc; 2016 Aug; 138(33):10467-76. PubMed ID: 27480512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment.
    Zhu W; Xiao S; Zhang D; Liu P; Zhou H; Dai W; Liu F; Li H
    Langmuir; 2015 Oct; 31(39):10822-30. PubMed ID: 26390086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating Atomic Structures at the Au/TiO
    Huang J; He S; Goodsell JL; Mulcahy JR; Guo W; Angerhofer A; Wei WD
    J Am Chem Soc; 2020 Apr; 142(14):6456-6460. PubMed ID: 32202771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110).
    Molina LM; Rasmussen MD; Hammer B
    J Chem Phys; 2004 Apr; 120(16):7673-80. PubMed ID: 15267678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Reactions on Pd-Au Bimetallic Model Catalysts.
    Han S; Mullins CB
    Acc Chem Res; 2021 Jan; 54(2):379-387. PubMed ID: 33371669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water Poisons H
    Sravan Kumar KB; Whittaker TN; Peterson C; Grabow LC; Chandler BD
    J Am Chem Soc; 2020 Mar; 142(12):5760-5772. PubMed ID: 32083865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H
    Whittaker T; Kumar KBS; Peterson C; Pollock MN; Grabow LC; Chandler BD
    J Am Chem Soc; 2018 Dec; 140(48):16469-16487. PubMed ID: 30231199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.