These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 24015593)

  • 41. First-principles study of C adsorption, O adsorption, and CO dissociation on flat and stepped Ni surfaces.
    Li T; Bhatia B; Sholl DS
    J Chem Phys; 2004 Nov; 121(20):10241-9. PubMed ID: 15549900
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects.
    Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK
    Faraday Discuss; 2018 Sep; 208(0):497-522. PubMed ID: 29808835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Factors controlling the energetics of the oxygen reduction reaction on the Pd-Co electro-catalysts: insight from first principles.
    Zuluaga S; Stolbov S
    J Chem Phys; 2011 Oct; 135(13):134702. PubMed ID: 21992330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of Coverage-Dependent Binding Energy Models for Mean-Field Microkinetic Rate Predictions.
    Bajpai A; Frey K; Schneider WF
    Langmuir; 2020 Jan; 36(1):465-474. PubMed ID: 31841619
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic activities of subnanometer gold clusters (Au₁₆-Au₁₈, Au₂₀, and Au₂₇-Au₃₅) for CO oxidation.
    Gao Y; Shao N; Pei Y; Chen Z; Zeng XC
    ACS Nano; 2011 Oct; 5(10):7818-29. PubMed ID: 21888432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of adsorbates on the electronic structure, bond strain, and thermal properties of an alumina-supported Pt catalyst.
    Small MW; Sanchez SI; Marinkovic NS; Frenkel AI; Nuzzo RG
    ACS Nano; 2012 Jun; 6(6):5583-95. PubMed ID: 22575058
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical Investigation of the Adsorption Properties of CO, NO, and OH on Monometallic and Bimetallic 13-Atom Clusters: The Example of Cu13, Pt7Cu6, and Pt13.
    Chaves AS; Piotrowski MJ; Guedes-Sobrinho D; Da Silva JL
    J Phys Chem A; 2015 Nov; 119(47):11565-73. PubMed ID: 26524466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O
    Jia C; Wang X; Zhong W; Wang Z; Prezhdo OV; Luo Y; Jiang J
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9629-9640. PubMed ID: 30741519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Universality in surface mixing rule of adsorption strength for small adsorbates on binary transition metal alloys.
    Ko J; Kwon H; Kang H; Kim BK; Han JW
    Phys Chem Chem Phys; 2015 Feb; 17(5):3123-30. PubMed ID: 25515855
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-crystal adsorption calorimetry on well-defined surfaces: from single crystals to supported nanoparticles.
    Schauermann S; Silbaugh TL; Campbell CT
    Chem Rec; 2014 Oct; 14(5):759-74. PubMed ID: 25155869
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Density functional theory study on the adsorption and decomposition of the formic acid catalyzed by highly active mushroom-like Au@Pd@Pt tri-metallic nanoparticles.
    Duan S; Ji YF; Fang PP; Chen YX; Xu X; Luo Y; Tian ZQ
    Phys Chem Chem Phys; 2013 Apr; 15(13):4625-33. PubMed ID: 23423429
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO₂ and TiO₂: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory.
    Patel M; Sanches FF; Mallia G; Harrison NM
    Phys Chem Chem Phys; 2014 Oct; 16(39):21002-15. PubMed ID: 24979063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DFT study of the structure, chemical ordering and molecular adsorption of Pd-Ir nanoalloys.
    Fan TE; Demiroglu I; Hussein HA; Liu TD; Johnston RL
    Phys Chem Chem Phys; 2017 Oct; 19(39):27090-27098. PubMed ID: 28960217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates.
    Gao W; Chen Y; Li B; Liu SP; Liu X; Jiang Q
    Nat Commun; 2020 Mar; 11(1):1196. PubMed ID: 32139675
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics.
    Xu Y; Getman RB; Shelton WA; Schneider WF
    Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isothermal kinetic study of nitric oxide adsorption and decomposition on Pd(111) surfaces: molecular beam experiments.
    Thirunavukkarasu K; Thirumoorthy K; Libuda J; Gopinath CS
    J Phys Chem B; 2005 Jul; 109(27):13283-90. PubMed ID: 16852656
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface phase diagram prediction from a minimal number of DFT calculations: redox-active adsorbates on zinc oxide.
    Hellström M; Behler J
    Phys Chem Chem Phys; 2017 Nov; 19(42):28731-28748. PubMed ID: 29044257
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theory of nitride oxide adsorption on transition metal (111) surfaces: a first-principles investigation.
    Zeng ZH; Da Silva JL; Li WX
    Phys Chem Chem Phys; 2010 Mar; 12(10):2459-70. PubMed ID: 20449360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influence of support morphology on the bonding of molecules to nanoparticles.
    Yim CM; Pang CL; Hermoso DR; Dover CM; Muryn CA; Maccherozzi F; Dhesi SS; Pérez R; Thornton G
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):7903-8. PubMed ID: 26080433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.