BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 24015839)

  • 1. Temporally controlled targeting of 4-hydroxynonenal to specific proteins in living cells.
    Fang X; Fu Y; Long MJ; Haegele JA; Ge EJ; Parvez S; Aye Y
    J Am Chem Soc; 2013 Oct; 135(39):14496-9. PubMed ID: 24015839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.
    Lin HY; Haegele JA; Disare MT; Lin Q; Aye Y
    J Am Chem Soc; 2015 May; 137(19):6232-44. PubMed ID: 25909755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems analysis of protein modification and cellular responses induced by electrophile stress.
    Jacobs AT; Marnett LJ
    Acc Chem Res; 2010 May; 43(5):673-83. PubMed ID: 20218676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Protein-Specific Redox Targeting in Live Mammalian Cells and C. elegans.
    Van Hall-Beauvais A; Zhao Y; Urul DA; Long MJC; Aye Y
    Curr Protoc Chem Biol; 2018 Sep; 10(3):e43. PubMed ID: 30085412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1.
    Holland R; Fishbein JC
    Antioxid Redox Signal; 2010 Dec; 13(11):1749-61. PubMed ID: 20486763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
    Rachakonda G; Xiong Y; Sekhar KR; Stamer SL; Liebler DC; Freeman ML
    Chem Res Toxicol; 2008 Mar; 21(3):705-10. PubMed ID: 18251510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex.
    Lo SC; Hannink M
    J Biol Chem; 2006 Dec; 281(49):37893-903. PubMed ID: 17046835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX.
    Long MJC; Rogg C; Aye Y
    Acc Chem Res; 2021 Feb; 54(3):618-631. PubMed ID: 33228351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth.
    Zhang P; Singh A; Yegnasubramanian S; Esopi D; Kombairaju P; Bodas M; Wu H; Bova SG; Biswal S
    Mol Cancer Ther; 2010 Feb; 9(2):336-46. PubMed ID: 20124447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling.
    Long MJ; Lin HY; Parvez S; Zhao Y; Poganik JR; Huang P; Aye Y
    Cell Chem Biol; 2017 Aug; 24(8):944-957.e7. PubMed ID: 28736239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer.
    Guéraud F
    Free Radic Biol Med; 2017 Oct; 111():196-208. PubMed ID: 28065782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury.
    Kumagai Y; Kanda H; Shinkai Y; Toyama T
    Oxid Med Cell Longev; 2013; 2013():848279. PubMed ID: 23878621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of electrophile-sensitive proteins.
    Wall SB; Smith MR; Ricart K; Zhou F; Vayalil PK; Oh JY; Landar A
    Biochim Biophys Acta; 2014 Feb; 1840(2):913-22. PubMed ID: 24021887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway through covalent modification of the 2-alkenal group of aliphatic electrophiles in Coriandrum sativum L.
    Abiko Y; Mizokawa M; Kumagai Y
    J Agric Food Chem; 2014 Nov; 62(45):10936-44. PubMed ID: 25307732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced 4-hydroxynonenal resistance in KEAP1 silenced human colon cancer cells.
    Jung KA; Kwak MK
    Oxid Med Cell Longev; 2013; 2013():423965. PubMed ID: 23766854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of combined exposure to environmental aliphatic electrophiles from plants on Keap1/Nrf2 activation and cytotoxicity in HepG2 cells: A model of an electrophile exposome.
    Abiko Y; Aoki H; Kumagai Y
    Toxicol Appl Pharmacol; 2021 Feb; 413():115392. PubMed ID: 33428920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) inhibition by 4-hydroxynonenal leads to increased Akt activation in hepatocytes.
    Shearn CT; Smathers RL; Stewart BJ; Fritz KS; Galligan JJ; Hail N; Petersen DR
    Mol Pharmacol; 2011 Jun; 79(6):941-52. PubMed ID: 21415306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of the negative regulator of Nrf2, Keap1: a historical overview.
    Itoh K; Mimura J; Yamamoto M
    Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of NF-kappaB signaling by KEAP1 regulation of IKKbeta activity through autophagic degradation and inhibition of phosphorylation.
    Kim JE; You DJ; Lee C; Ahn C; Seong JY; Hwang JI
    Cell Signal; 2010 Nov; 22(11):1645-54. PubMed ID: 20600852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.