These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 24016133)
21. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Tonini D; Hamelin L; Alvarado-Morales M; Astrup TF Bioresour Technol; 2016 May; 208():123-133. PubMed ID: 26938807 [TBL] [Abstract][Full Text] [Related]
22. Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: Challenges and perspectives. Singh A; Pant D; Korres NE; Nizami AS; Prasad S; Murphy JD Bioresour Technol; 2010 Jul; 101(13):5003-12. PubMed ID: 20015644 [TBL] [Abstract][Full Text] [Related]
23. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles. Spatari S; Zhang Y; MacLean HL Environ Sci Technol; 2005 Dec; 39(24):9750-8. PubMed ID: 16475363 [TBL] [Abstract][Full Text] [Related]
24. Spatially-explicit life cycle assessment of sun-to-wheels transportation pathways in the U.S. Geyer R; Stoms D; Kallaos J Environ Sci Technol; 2013 Jan; 47(2):1170-6. PubMed ID: 23268715 [TBL] [Abstract][Full Text] [Related]
25. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae. Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295 [TBL] [Abstract][Full Text] [Related]
26. Effects of ethanol (E85) versus gasoline vehicles on cancer and mortality in the United States. Jacobson MZ Environ Sci Technol; 2007 Jun; 41(11):4150-7. PubMed ID: 17612204 [TBL] [Abstract][Full Text] [Related]
27. Abatement cost of GHG emissions for wood-based electricity and ethanol at production and consumption levels. Dwivedi P; Khanna M PLoS One; 2014; 9(6):e100030. PubMed ID: 24937461 [TBL] [Abstract][Full Text] [Related]
28. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source. Luk JM; Saville BA; MacLean HL Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338 [TBL] [Abstract][Full Text] [Related]
29. Incorporating time-corrected life cycle greenhouse gas emissions in vehicle regulations. Kendall A; Price L Environ Sci Technol; 2012 Mar; 46(5):2557-63. PubMed ID: 22283799 [TBL] [Abstract][Full Text] [Related]
30. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels. Scown CD; Taptich M; Horvath A; McKone TE; Nazaroff WW Environ Sci Technol; 2013 Aug; 47(16):9044-52. PubMed ID: 23906086 [TBL] [Abstract][Full Text] [Related]
31. Life cycle assessment of biofuels: energy and greenhouse gas balances. Gnansounou E; Dauriat A; Villegas J; Panichelli L Bioresour Technol; 2009 Nov; 100(21):4919-30. PubMed ID: 19553106 [TBL] [Abstract][Full Text] [Related]
32. Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Yang Y; Bae J; Kim J; Suh S Environ Sci Technol; 2012 Apr; 46(7):3671-8. PubMed ID: 22390573 [TBL] [Abstract][Full Text] [Related]
33. A tank-to-wheel analysis tool for energy and emissions studies in road vehicles. Silva CM; Gonçalves GA; Farias TL; Mendes-Lopes JM Sci Total Environ; 2006 Aug; 367(1):441-7. PubMed ID: 16546238 [TBL] [Abstract][Full Text] [Related]
34. Emissions savings in the corn-ethanol life cycle from feeding coproducts to livestock. Bremer VR; Liska AJ; Klopfenstein TJ; Erickson GE; Yang HS; Walters DT; Cassman KG J Environ Qual; 2010; 39(2):472-82. PubMed ID: 20176820 [TBL] [Abstract][Full Text] [Related]
35. Reducing motor vehicle greenhouse gas emissions in a non-California state: a case study of Minnesota. Boies A; Hankey S; Kittelson D; Marshall JD; Nussbaum P; Watts W; Wilson EJ Environ Sci Technol; 2009 Dec; 43(23):8721-9. PubMed ID: 19943638 [TBL] [Abstract][Full Text] [Related]
36. Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Chavez-Rodriguez MF; Nebra SA Environ Sci Technol; 2010 Dec; 44(24):9252-7. PubMed ID: 21105738 [TBL] [Abstract][Full Text] [Related]
37. Well-to-wake analysis of ethanol-to-jet and sugar-to-jet pathways. Han J; Tao L; Wang M Biotechnol Biofuels; 2017; 10():21. PubMed ID: 28138339 [TBL] [Abstract][Full Text] [Related]
38. Current and future greenhouse gas emissions associated with electricity generation in China: implications for electric vehicles. Shen W; Han W; Wallington TJ Environ Sci Technol; 2014 Jun; 48(12):7069-75. PubMed ID: 24853334 [TBL] [Abstract][Full Text] [Related]
39. Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and without BECCS. Gelfand I; Hamilton SK; Kravchenko AN; Jackson RD; Thelen KD; Robertson GP Environ Sci Technol; 2020 Mar; 54(5):2961-2974. PubMed ID: 32052964 [TBL] [Abstract][Full Text] [Related]
40. On-road vehicle emission inventory and its uncertainty analysis for Shanghai, China. Wang H; Chen C; Huang C; Fu L Sci Total Environ; 2008 Jul; 398(1-3):60-7. PubMed ID: 18448148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]