BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24016264)

  • 1. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.
    Song H; Leninger M; Lee N; Liu P
    Org Lett; 2013 Sep; 15(18):4854-7. PubMed ID: 24016264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis.
    Song H; Her AS; Raso F; Zhen Z; Huo Y; Liu P
    Org Lett; 2014 Apr; 16(8):2122-5. PubMed ID: 24684381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinformatic and biochemical characterizations of C-S bond formation and cleavage enzymes in the fungus Neurospora crassa ergothioneine biosynthetic pathway.
    Hu W; Song H; Sae Her A; Bak DW; Naowarojna N; Elliott SJ; Qin L; Chen X; Liu P
    Org Lett; 2014 Oct; 16(20):5382-5. PubMed ID: 25275953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation.
    Chen L; Naowarojna N; Song H; Wang S; Wang J; Deng Z; Zhao C; Liu P
    J Am Chem Soc; 2018 Apr; 140(13):4604-4612. PubMed ID: 29544051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis.
    Naowarojna N; Cheng R; Chen L; Quill M; Xu M; Zhao C; Liu P
    Biochemistry; 2018 Jun; 57(24):3309-3325. PubMed ID: 29589901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiohistidine biosynthesis.
    Seebeck FP
    Chimia (Aarau); 2013; 67(5):333-6. PubMed ID: 23863267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway.
    Goncharenko KV; Vit A; Blankenfeldt W; Seebeck FP
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2821-4. PubMed ID: 25597398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C-S Lyase and Methyltransferase Reactions.
    Naowarojna N; Huang P; Cai Y; Song H; Wu L; Cheng R; Li Y; Wang S; Lyu H; Zhang L; Zhou J; Liu P
    Org Lett; 2018 Sep; 20(17):5427-5430. PubMed ID: 30141637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proposed antioxidation mechanism of ergothioneine based on the chemically derived oxidation product hercynine and further decomposition products.
    Ando C; Morimitsu Y
    Biosci Biotechnol Biochem; 2021 Apr; 85(5):1175-1182. PubMed ID: 33686392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio studies of the properties of intracellular thiols ergothioneine and ovothiol.
    Hand CE; Taylor NJ; Honek JF
    Bioorg Med Chem Lett; 2005 Mar; 15(5):1357-60. PubMed ID: 15713386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of the first ovothiol biosynthetic enzyme.
    Braunshausen A; Seebeck FP
    J Am Chem Soc; 2011 Feb; 133(6):1757-9. PubMed ID: 21247153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of Mycobacterium tuberculosis EgtD target both substrate binding sites to limit hercynine production.
    Sudasinghe TD; Banco MT; Ronning DR
    Sci Rep; 2021 Nov; 11(1):22240. PubMed ID: 34782676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and Structural Characterization of OvoA
    Wang X; Hu S; Wang J; Zhang T; Ye K; Wen A; Zhu G; Vegas A; Zhang L; Yan W; Liu X; Liu P
    ACS Catal; 2023 Dec; 13(23):15417-15426. PubMed ID: 38058600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Production of Ergothioneine in
    Kamide T; Takusagawa S; Tanaka N; Ogasawara Y; Kawano Y; Ohtsu I; Satoh Y; Dairi T
    J Agric Food Chem; 2020 Jun; 68(23):6390-6394. PubMed ID: 32436380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of ergothioneine from endogenous hercynine in Mycobacterium smegmatis.
    Genghof DS; Van Damme O
    J Bacteriol; 1968 Feb; 95(2):340-4. PubMed ID: 5644441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic mechanism of sulfoxide synthases.
    Stampfli AR; Seebeck FP
    Curr Opin Chem Biol; 2020 Dec; 59():111-118. PubMed ID: 32726707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ergothioneine stands out from hercynine in the reaction with singlet oxygen: Resistance to glutathione and TRIS in the generation of specific products indicates high reactivity.
    Stoffels C; Oumari M; Perrou A; Termath A; Schlundt W; Schmalz HG; Schäfer M; Wewer V; Metzger S; Schömig E; Gründemann D
    Free Radic Biol Med; 2017 Dec; 113():385-394. PubMed ID: 29074402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Alternative Active Site Architecture for O
    Stampfli AR; Goncharenko KV; Meury M; Dubey BN; Schirmer T; Seebeck FP
    J Am Chem Soc; 2019 Apr; 141(13):5275-5285. PubMed ID: 30883103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complex evolutionary history of sulfoxide synthase in ovothiol biosynthesis.
    Gerdol M; Sollitto M; Pallavicini A; Castellano I
    Proc Biol Sci; 2019 Dec; 286(1916):20191812. PubMed ID: 31771466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An S=1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation.
    Paris JC; Hu S; Wen A; Weitz AC; Cheng R; Gee LB; Tang Y; Kim H; Vegas A; Chang WC; Elliott SJ; Liu P; Guo Y
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202309362. PubMed ID: 37640689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.