These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24016299)

  • 21. Metabolomics data exploration guided by prior knowledge.
    van den Berg RA; Rubingh CM; Westerhuis JA; van der Werf MJ; Smilde AK
    Anal Chim Acta; 2009 Oct; 651(2):173-81. PubMed ID: 19782808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol.
    Tian X; Chen L; Wang J; Qiao J; Zhang W
    J Proteomics; 2013 Jan; 78():326-45. PubMed ID: 23079071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach.
    Li H; Ma ML; Luo S; Zhang RM; Han P; Hu W
    Int J Biochem Cell Biol; 2012 Jul; 44(7):1087-96. PubMed ID: 22504284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering strategies for butanol production in Escherichia coli.
    Ferreira S; Pereira R; Wahl SA; Rocha I
    Biotechnol Bioeng; 2020 Aug; 117(8):2571-2587. PubMed ID: 32374413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli.
    Nitta K; LaviƱa WA; Pontrelli S; Liao JC; Putri SP; Fukusaki E
    J Biosci Bioeng; 2017 Nov; 124(5):498-505. PubMed ID: 28669528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of plasma metabolic profiling and biomarkers of chronic unpredictable mild stress rats based on gas chromatography/mass spectrometry.
    Li ZY; Zheng XY; Gao XX; Zhou YZ; Sun HF; Zhang LZ; Guo XQ; Du GH; Qin XM
    Rapid Commun Mass Spectrom; 2010 Dec; 24(24):3539-46. PubMed ID: 21080506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic metabolomic responses of Escherichia coli to nicotine stress.
    Ding L; Chen J; Zou J; Zhang L; Ye Y
    Can J Microbiol; 2014 Aug; 60(8):547-56. PubMed ID: 25093750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isobutanol production from cellobionic acid in Escherichia coli.
    Desai SH; Rabinovitch-Deere CA; Fan Z; Atsumi S
    Microb Cell Fact; 2015 Apr; 14():52. PubMed ID: 25889729
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.
    Trinh CT; Li J; Blanch HW; Clark DS
    Appl Environ Microbiol; 2011 Jul; 77(14):4894-904. PubMed ID: 21642415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach.
    Liu D; Ford KL; Roessner U; Natera S; Cassin AM; Patterson JH; Bacic A
    Proteomics; 2013 Jun; 13(12-13):2046-62. PubMed ID: 23661342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein Network Signatures Associated with Exogenous Biofuels Treatments in Cyanobacterium Synechocystis sp. PCC 6803.
    Pei G; Chen L; Wang J; Qiao J; Zhang W
    Front Bioeng Biotechnol; 2014; 2():48. PubMed ID: 25405149
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions.
    Su Y; Wang J; Shi M; Niu X; Yu X; Gao L; Zhang X; Chen L; Zhang W
    Bioresour Technol; 2014 Oct; 170():522-529. PubMed ID: 25164345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Production of advanced biofuels in engineered E. coli.
    Wen M; Bond-Watts BB; Chang MC
    Curr Opin Chem Biol; 2013 Jun; 17(3):472-9. PubMed ID: 23659832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulatory mechanisms related to biofuel tolerance in producing microbes.
    Fu Y; Chen L; Zhang W
    J Appl Microbiol; 2016 Aug; 121(2):320-32. PubMed ID: 27123568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Escherichia coli for biofuel production: bridging the gap from promise to practice.
    Huffer S; Roche CM; Blanch HW; Clark DS
    Trends Biotechnol; 2012 Oct; 30(10):538-45. PubMed ID: 22921756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals.
    Rau MH; Calero P; Lennen RM; Long KS; Nielsen AT
    Microb Cell Fact; 2016 Oct; 15(1):176. PubMed ID: 27737709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolomic analysis reveals functional overlapping of three signal transduction proteins in regulating ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803.
    Zhu Y; Pei G; Niu X; Shi M; Zhang M; Chen L; Zhang W
    Mol Biosyst; 2015 Mar; 11(3):770-82. PubMed ID: 25502571
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of a sample preparation method for the metabolomic analysis of clinically relevant bacteria.
    Marcinowska R; Trygg J; Wolf-Watz H; Mortiz T; Surowiec I
    J Microbiol Methods; 2011 Oct; 87(1):24-31. PubMed ID: 21763728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering microbial biofuel tolerance and export using efflux pumps.
    Dunlop MJ; Dossani ZY; Szmidt HL; Chu HC; Lee TS; Keasling JD; Hadi MZ; Mukhopadhyay A
    Mol Syst Biol; 2011 May; 7():487. PubMed ID: 21556065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic engineering of Escherichia coli for biofuel production.
    Liu T; Khosla C
    Annu Rev Genet; 2010; 44():53-69. PubMed ID: 20822440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.