These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 24016299)
41. L-Glycine Alleviates Furfural-Induced Growth Inhibition during Isobutanol Production in Escherichia coli. Song HS; Jeon JM; Choi YK; Kim JY; Kim W; Yoon JJ; Park K; Ahn J; Lee H; Yang YH J Microbiol Biotechnol; 2017 Dec; 27(12):2165-2172. PubMed ID: 29032645 [TBL] [Abstract][Full Text] [Related]
42. Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Chong H; Geng H; Zhang H; Song H; Huang L; Jiang R Biotechnol Bioeng; 2014 Apr; 111(4):700-8. PubMed ID: 24203355 [TBL] [Abstract][Full Text] [Related]
43. Metabolic analysis reveals the amino acid responses of Streptomyces lydicus to pitching ratios during improving streptolydigin production. Cheng JS; Liang YQ; Ding MZ; Cui SF; Lv XM; Yuan YJ Appl Microbiol Biotechnol; 2013 Jul; 97(13):5943-54. PubMed ID: 23494621 [TBL] [Abstract][Full Text] [Related]
44. Systematic identification of conserved metabolites in GC/MS data for metabolomics and biomarker discovery. Styczynski MP; Moxley JF; Tong LV; Walther JL; Jensen KL; Stephanopoulos GN Anal Chem; 2007 Feb; 79(3):966-73. PubMed ID: 17263323 [TBL] [Abstract][Full Text] [Related]
45. Metabolic engineering of Escherichia coli for the production of isobutanol: a review. Gu P; Liu L; Ma Q; Dong Z; Wang Q; Xu J; Huang Z; Li Q World J Microbiol Biotechnol; 2021 Sep; 37(10):168. PubMed ID: 34487256 [TBL] [Abstract][Full Text] [Related]
46. Microbial 1-butanol production: Identification of non-native production routes and in silico engineering interventions. Ranganathan S; Maranas CD Biotechnol J; 2010 Jul; 5(7):716-25. PubMed ID: 20665644 [TBL] [Abstract][Full Text] [Related]
47. Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. Phua LC; Koh PK; Cheah PY; Ho HK; Chan EC J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 937():103-13. PubMed ID: 24029555 [TBL] [Abstract][Full Text] [Related]
48. A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism. Wang X; Xie Y; Gao P; Zhang S; Tan H; Yang F; Lian R; Tian J; Xu G Anal Biochem; 2014 Apr; 451():48-55. PubMed ID: 24513124 [TBL] [Abstract][Full Text] [Related]
49. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. Yan B; A J; Wang G; Lu H; Huang X; Liu Y; Zha W; Hao H; Zhang Y; Liu L; Gu S; Huang Q; Zheng Y; Sun J J Appl Physiol (1985); 2009 Feb; 106(2):531-8. PubMed ID: 19036890 [TBL] [Abstract][Full Text] [Related]
50. Metabolic profiling as a tool for understanding defense response of Taxus cuspidata cells to shear stress. Han PP; Yuan YJ Biotechnol Prog; 2009; 25(5):1244-53. PubMed ID: 19606465 [TBL] [Abstract][Full Text] [Related]
51. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism. Hou E; Li X; Liu Z; Zhang F; Tian Z Biomed Chromatogr; 2018 Apr; 32(4):. PubMed ID: 29130499 [TBL] [Abstract][Full Text] [Related]
52. Metabolomic analysis on the toxicological effects of TiO₂ nanoparticles in mouse fibroblast cells: from the perspective of perturbations in amino acid metabolism. Bo Y; Jin C; Liu Y; Yu W; Kang H Toxicol Mech Methods; 2014 Oct; 24(7):461-9. PubMed ID: 24965839 [TBL] [Abstract][Full Text] [Related]
53. Emerging nonmodel eukaryotes for biofuel production. Hu L; Qiu H; Huang L; Zhang F; Tran VG; Yuan J; He N; Cao M Curr Opin Biotechnol; 2023 Dec; 84():103015. PubMed ID: 37913603 [TBL] [Abstract][Full Text] [Related]
54. Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli. Atsumi S; Wu TY; Machado IM; Huang WC; Chen PY; Pellegrini M; Liao JC Mol Syst Biol; 2010 Dec; 6():449. PubMed ID: 21179021 [TBL] [Abstract][Full Text] [Related]
55. Comparison of two algorithmic data processing strategies for metabolic fingerprinting by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Almstetter MF; Appel IJ; Dettmer K; Gruber MA; Oefner PJ J Chromatogr A; 2011 Sep; 1218(39):7031-8. PubMed ID: 21871627 [TBL] [Abstract][Full Text] [Related]
56. Development of a quantitative, validated capillary electrophoresis-time of flight-mass spectrometry method with integrated high-confidence analyte identification for metabolomics. Timischl B; Dettmer K; Kaspar H; Thieme M; Oefner PJ Electrophoresis; 2008 May; 29(10):2203-14. PubMed ID: 18409164 [TBL] [Abstract][Full Text] [Related]
57. Global metabolic profiling of Escherichia coli cultures: an evaluation of methods for quenching and extraction of intracellular metabolites. Winder CL; Dunn WB; Schuler S; Broadhurst D; Jarvis R; Stephens GM; Goodacre R Anal Chem; 2008 Apr; 80(8):2939-48. PubMed ID: 18331064 [TBL] [Abstract][Full Text] [Related]
58. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Reyes LH; Abdelaal AS; Kao KC Appl Environ Microbiol; 2013 Sep; 79(17):5313-20. PubMed ID: 23811509 [TBL] [Abstract][Full Text] [Related]
59. Phenotype differentiation of three E. coli strains by GC-FID and GC-MS based metabolomics. Tian J; Shi C; Gao P; Yuan K; Yang D; Lu X; Xu G J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Aug; 871(2):220-6. PubMed ID: 18620912 [TBL] [Abstract][Full Text] [Related]
60. GC-MS-based metabolomics study of the responses to arachidonic acid in Blakeslea trispora. Hu X; Li H; Tang P; Sun J; Yuan Q; Li C Fungal Genet Biol; 2013 Aug; 57():33-41. PubMed ID: 23769871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]